The main challenge in treating malignant brain neoplasms lies in eradicating the tumor while minimizing treatment-related damage. Conventional radiation treatments are associated with considerable side effects. Synchrotron generated micro-beam radiation (SMBRT) has shown to preserve brain architecture while killing tumor cells, however physical characteristics and limited facility access restrict its use.
View Article and Find Full Text PDFThe goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data.
View Article and Find Full Text PDFAustralas Phys Eng Sci Med
June 2015
There have been substantial advances in small field dosimetry techniques and technologies, over the last decade, which have dramatically improved the achievable accuracy of small field dose measurements. This educational note aims to help radiation oncology medical physicists to apply some of these advances in clinical practice. The evaluation of a set of small field output factors (total scatter factors) is used to exemplify a detailed measurement and simulation procedure and as a basis for discussing the possible effects of simplifying that procedure.
View Article and Find Full Text PDFPurpose: Two diodes which do not require correction factors for small field relative output measurements are designed and validated using experimental methodology. This was achieved by adding an air layer above the active volume of the diode detectors, which canceled out the increase in response of the diodes in small fields relative to standard field sizes.
Methods: Due to the increased density of silicon and other components within a diode, additional electrons are created.
Purpose: The goal of this work was to analyse small bowel (SB) dose-volume following the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) guidelines for rectal cancer patients treated using a couch top inclined belly board (iBB). As part of this, the consistency in SB displacement was evaluated using on-treatment cone-beam computed tomographic (CBCT) imaging.
Methods: Twenty-four patients with rectal cancer were treated on a commercially available iBB.
Purpose: This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented.
View Article and Find Full Text PDFPurpose: The goal of this work was to set out a methodology for measuring and reporting small field relative output and to assess the application of published correction factors across a population of linear accelerators.
Methods And Materials: Measurements were made at 6 MV on five Varian iX accelerators using two PTW T60017 unshielded diodes. Relative output readings and profile measurements were made for nominal square field sizes of side 0.
The goal of this work was to perform a 6 MV small field characterization of the new Agility 160-leaf multi-leaf collimator (MLC) from Elekta. This included profile measurement analysis and central axis relative output measurements using various diode detectors and an air-core fiber optic scintillation dosimeter (FOD). Data was acquired at a depth of 10.
View Article and Find Full Text PDFAims: To calculate a planning target volume (PTV) margin that would account for inter-fractional systematic and random clinical target volume positional errors for patients treated prone on a recently available couch top bellyboard and to evaluate potential critical structure dose reduction using intensity-modulated radiotherapy (IMRT) techniques.
Materials And Methods: Twenty-four patients (12 men and 12 women) were included in this study, all treated on a commercial bellyboard. Cone beam computed tomography (CBCT) data were acquired once every five fractions for a total of five images per patient.
The goal of this work was to examine the use of simplified diode detector models within a recently proposed Monte Carlo (MC) based small field dosimetry formalism and to investigate the influence of electron source parameterization has on MC calculated correction factors. BEAMnrc was used to model Varian 6 MV jaw-collimated square field sizes down to 0.5 cm.
View Article and Find Full Text PDFPurpose: The goal of this work was to implement a recently proposed small field dosimetry formalism [Alfonso et al., Med. Phys.
View Article and Find Full Text PDFBackground And Purpose: The goal of this work was to measure 6MV small field, detector specific, output ratios (OR(det)) using the IBA stereotactic field diode (SFD) and the PTW T60008, T60012, T60016 and T60017 field diodes on both Varian iX and Elekta Synergy accelerators, to establish estimates for the experimental uncertainty and characterize the measurement precision under various conditions.
Materials And Methods: Data were acquired at depths of 1.5, 5.
The goal of this work was to use daily kV-kV imaging and weekly cone-beam CT (CBCT) to evaluate rectal cancer patient position when treated on a new couch top belly board (BB). Quality assurance (QA) of the imaging system was conducted weekly to ensure proper performance. The positional uncertainty of the combined kV-kV image match and subsequent couch move was found to be no more than ± 1.
View Article and Find Full Text PDFThe Monte Carlo code DOSXYZnrc is a valuable instrument for calculating absorbed dose within a three-dimensional Cartesian geometry. DOSXYZnrc includes several variance reduction techniques used to increase the efficiency of the Monte Carlo calculation. One such technique is HOWFARLESS which is used to increase the efficiency of beam commissioning calculations in homogeneous phantoms.
View Article and Find Full Text PDFThe purpose of this study was to investigate the potential dosimetric effects of systematic rotational setup errors on prostate patients planned according to the RTOG P-0126 protocol, and to identify rotational tolerances about either the anterior-posterior (AP) or left-right (LR) axis, under which no correction in setup is required. Eight 3-dimensional conformal radiation therapy (3D-CRT) treatment plans were included in the study, half planned to give 7020 cGy in 39 fractions (P-0126 Arm 1) and the other half planned to give 7920 cGy in 44 fractions (P-0126 Arm 2). Systematic rotations of the pelvic anatomy were simulated in a commercial treatment planning system by rotating opposing apertures in the opposite direction to the simulated anatomy rotation.
View Article and Find Full Text PDFThis article presents a method for increasing the speed of DOSXYZnrc Monte Carlo simulations through the introduction of nonvoxelated geometries defined in any coordinate system. Nonvoxelated geometries are used to isolate regions of uniform density and composition from the scoring grid. Particle transport within these geometric regions is not restricted by the boundary constraints of the scoring grid.
View Article and Find Full Text PDFThe purpose of this work is to quantify the impact of dose uncertainty on radiobiologically based treatment plan evaluation. Dose uncertainties are divided into two categories: physical and statistical. Physical dose uncertainty is associated with the systematic and/or random errors incurred during treatment planning and/or delivery.
View Article and Find Full Text PDFThe goal of this study was to quantify, in a heterogeneous phantom, the difference between experimentally measured beam profiles and those calculated using both a commercial convolution algorithm and the Monte Carlo (MC) method. This was done by arranging a phantom geometry that incorporated a vertical solid water-lung material interface parallel to the beam axis. At nominal x-ray energies of 6 and 18 MV, dose distributions were modelled for field sizes of 10 x 10 cm(2) and 4 x 4 cm(2) using the CadPlan 6.
View Article and Find Full Text PDF