Publications by authors named "Cramer P"

The advent of spatial transcriptomics and spatial proteomics have enabled profound insights into tissue organization to provide systems-level understanding of diseases. Both technologies currently remain largely independent, and emerging same slide spatial multi-omics approaches are generally limited in plex, spatial resolution, and analytical approaches. We introduce IN-situ DEtailed Phenotyping To High-resolution transcriptomics (IN-DEPTH), a streamlined and resource-effective approach compatible with various spatial platforms.

View Article and Find Full Text PDF

Background: Therapeutic apheresis (TA) are promising treatment option for neuroimmunological disorders. In paediatrics, the available data is limited, particularly for the use of IA. The aim of this study was to analyse the use of PE and IA in children and adolescents, with emphasis on outcome and neurological course after treatment as well as the safety of the two modalities.

View Article and Find Full Text PDF

Purpose: The CLL12 trial reassesses the watch-and-wait consensus for early-stage chronic lymphocytic leukemia (CLL) in the context of targeted therapies.

Methods: The German CLL Study Group conducted a randomized, double-blind, placebo-controlled phase III trial with 363 patients with asymptomatic, treatment-naïve Binet stage A CLL at increased risk of progression to receive ibrutinib (n = 182) at a daily dose of 420 mg or placebo (n = 181). Additionally, 152 low-risk patients were allocated to the watch-and-wait group.

View Article and Find Full Text PDF

Transcription-coupled DNA repair (TCR) removes bulky DNA lesions impeding RNA polymerase II (RNAPII) transcription. Recent studies have outlined the stepwise assembly of TCR factors CSB, CSA, UVSSA, and transcription factor IIH (TFIIH) around lesion-stalled RNAPII. However, the mechanism and factors required for the transition to downstream repair steps, including RNAPII removal to provide repair proteins access to the DNA lesion, remain unclear.

View Article and Find Full Text PDF

The mechanisms underlying the initiation and elongation of RNA polymerase II (Pol II) transcription are well-studied, whereas termination remains poorly understood. Here we analyze the mechanism of polyadenylation-independent Pol II termination mediated by the yeast Sen1 helicase. Cryo-electron microscopy structures of two pretermination intermediates show that Sen1 binds to Pol II and uses its adenosine triphosphatase activity to pull on exiting RNA in the 5' direction.

View Article and Find Full Text PDF

To maintain the nucleosome organization of transcribed genes, ATP-dependent chromatin remodelers collaborate with histone chaperones. Here, we show that at the 5' ends of yeast genes, RNA polymerase II (RNAPII) generates hexasomes that occur directly adjacent to nucleosomes. The resulting hexasome-nucleosome complexes are then resolved by Chd1.

View Article and Find Full Text PDF
Article Synopsis
  • UV crosslinking with mass spectrometry (XL-MS) helps identify proteins that bind to RNA and DNA, revealing their specific domains and amino acids.
  • The study introduces NuXL, a search engine designed to efficiently analyze nucleotide-protein crosslinks at a detailed amino acid level, enhancing the understanding of protein interactions.
  • This approach increases crosslinked protein yield significantly, providing valuable insights into the structural features and binding properties of over 1500 nucleic acid-binding proteins, including transcriptional regulators.
View Article and Find Full Text PDF

Purpose: Surrogate end points are commonly used to estimate treatment efficacy in clinical studies of chronic lymphocytic leukemia (CLL). This patient- and trial-level analysis describes the correlation between progression-free survival (PFS) and minimal residual disease (MRD) with overall survival (OS) in first-line trials for CLL.

Patients And Methods: First, patient-level correlation was confirmed using source data from 12 frontline German CLL Study Group (GCLLSG)-trials.

View Article and Find Full Text PDF

Yes-associated protein (YAP) and its homolog, transcriptional coactivator with PDZ-binding motif (TAZ), are the main transcriptional downstream effectors of the Hippo pathway. Decreased Hippo pathway activity leads to nuclear translocation of YAP/TAZ where they interact with TEAD transcription factors to induce target gene expression. Unrestrained YAP/TAZ activity can lead to excessive growth and tumor formation in a short time, underscoring the evolutionary need for tight control of these two transcriptional coactivators.

View Article and Find Full Text PDF

Introduction: The early transcription unit 3 (E3) of human adenoviruses (HAdVs) encodes several immunoevasins, including the E3/49K protein, which is unique for species D of HAdVs. It is expressed as surface transmembrane protein and shed. E3/49K of HAdV-D64 binds to the protein tyrosine phosphatase surface receptor CD45, thereby modulating activation of T and NK cells.

View Article and Find Full Text PDF

Transcription-coupled DNA repair (TCR) removes bulky DNA lesions impeding RNA polymerase II (RNAPII) transcription. Recent studies have outlined the stepwise assembly of TCR factors CSB, CSA, UVSSA, and TFIIH around lesion-stalled RNAPII. However, the mechanism and factors required for the transition to downstream repair steps, including RNAPII removal to provide repair proteins access to the DNA lesion, remain unclear.

View Article and Find Full Text PDF

Hidradenitis suppurativa (HS) is a debilitating, chronic inflammatory disease associated with multiple triggers. As the world struggles with the global COVID-19 pandemic, it is important to review the trigger factors for chronically ill HS patients during the COVID-19 pandemic. This work investigates the self-described trigger factors of HS patients that emerged during the COVID-19 outbreak.

View Article and Find Full Text PDF

Cyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis.

View Article and Find Full Text PDF

Facilitates chromatin transcription (FACT) is a histone chaperone that supports transcription through chromatin in vitro, but its functional roles in vivo remain unclear. Here, we analyze the in vivo functions of FACT with the use of multi-omics analysis after rapid FACT depletion from human cells. We show that FACT depletion destabilizes chromatin and leads to transcriptional defects, including defective promoter-proximal pausing and elongation, and increased premature termination of RNA polymerase II.

View Article and Find Full Text PDF
Article Synopsis
  • Phenotypic assays are valuable for detecting small molecules that influence cellular functions and can reveal new target interactions and biological insights.
  • An osteoblast differentiation assay using a Hedgehog signaling agonist identified a class of osteogenesis inhibitors known as pyrrolo[3,4-g]quinoline (PQ) compounds.
  • The most effective compound, Tafbromin, disrupts Hedgehog signaling by binding to TAF1's bromodomain 2, making it a promising resource for exploring biological processes related to TAF1(bromodomain 2).
View Article and Find Full Text PDF

Advancements in multiplexed tissue imaging technologies are vital in shaping our understanding of tissue microenvironmental influences in disease contexts. These technologies now allow us to relate the phenotype of individual cells to their higher-order roles in tissue organization and function. Multiplexed Ion Beam Imaging (MIBI) is one of such technologies, which uses metal isotope-labeled antibodies and secondary ion mass spectrometry (SIMS) to image more than 40 protein markers simultaneously within a single tissue section.

View Article and Find Full Text PDF

We evaluated the chronic lymphocytic leukemia International Prognostic Index (CLL-IPI) in patients with CLL treated first line with targeted drugs (n = 991) or chemoimmunotherapy (n = 1256). With a median observation time of 40.5 months, the 3-year progression-free survival (PFS) rates for targeted drug-treated patients varied by CLL-IPI risk group: 96.

View Article and Find Full Text PDF
Article Synopsis
  • The phase 2 CLL2-BAAG trial evaluated a combination therapy of acalabrutinib, venetoclax, and obinutuzumab in 45 patients with relapsed/refractory chronic lymphocytic leukemia (CLL), focusing on measurable residual disease (MRD) outcomes.
  • 93.3% of patients achieved undetectable MRD (<10-4) at any time point, showing the treatment's effectiveness, including those previously exposed to other therapies.
  • The study indicated high 3-year progression-free and overall survival rates (85.0% and 93.8%, respectively) and highlighted that integrating circulating tumor DNA (ctDNA) analysis with traditional methods improved early relapse detection
View Article and Find Full Text PDF

The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs.

View Article and Find Full Text PDF

The Integrator complex can terminate RNA polymerase II (Pol II) in the promoter-proximal region of genes. Previous work has shed light on how Integrator binds to the paused elongation complex consisting of Pol II, the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) and how it cleaves the nascent RNA transcript, but has not explained how Integrator removes Pol II from the DNA template. Here we present three cryo-electron microscopy structures of the complete Integrator-PP2A complex in different functional states.

View Article and Find Full Text PDF
Article Synopsis
  • Classic Hodgkin Lymphoma (cHL) is characterized by the presence of rare malignant HRS cells within a dense T-cell rich immune environment, with approximately 25% of cases linked to the Epstein-Barr Virus (EBV).
  • Using advanced imaging techniques, researchers analyzed 20 cHL samples to identify key differences in the tumor microenvironment between EBV-positive and EBV-negative cases, noting variations in T-cell populations and their dysfunction.
  • The study highlights distinct transcriptomic profiles that affect HRS cell growth and T-cell interactions, emphasizing the importance of understanding virus-associated tumors for developing targeted therapies.
View Article and Find Full Text PDF

During transcription-coupled DNA repair (TCR), RNA polymerase II (Pol II) transitions from a transcriptionally active state to an arrested state that allows for removal of DNA lesions. This transition requires site-specific ubiquitylation of Pol II by the CRL4 ubiquitin ligase, a process that is facilitated by ELOF1 in an unknown way. Using cryogenic electron microscopy, biochemical assays and cell biology approaches, we found that ELOF1 serves as an adaptor to stably position UVSSA and CRL4 on arrested Pol II, leading to ligase neddylation and activation of Pol II ubiquitylation.

View Article and Find Full Text PDF