Publications by authors named "Craig Woodard"

Background: Gerstmann-Straussler-Scheinker disease (GSS), an autosomal dominant prion disorder, usually presents as a slowly progressive cerebellar ataxia followed by later cognitive decline. We present a member of the GSS Indiana Kindred with supranuclear palsy, a less common feature in GSS.

Case Presentation: A 42-year-old man presented with 12 months of progressive gait and balance difficulty.

View Article and Find Full Text PDF

Background: Animals with polyploid, hybrid nuclei offer a challenge for models of gene expression and regulation during embryogenesis. To understand how such organisms proceed through development, we examined the timing and prevalence of mortality among embryos of unisexual salamanders in the genus Ambystoma.

Results: Our regional field surveys suggested that heightened rates of embryo mortality among unisexual salamanders begin in the earliest stages of embryogenesis.

View Article and Find Full Text PDF

During metamorphosis, holometabolous insects eliminate obsolete larval tissues via programmed cell death. In contrast, tissues required for further development are retained and often remodeled to meet the needs of the adult fly. The larval fat body is involved in fueling metamorphosis, and thus it escapes cell death and is instead remodeled during prepupal development.

View Article and Find Full Text PDF

Background: One of the hallmarks of Alzheimer's disease, and several other degenerative disorders such as Inclusion Body Myositis, is the abnormal accumulation of amyloid precursor protein (APP) and its proteolytic amyloid peptides. To better understand the pathological consequences of inappropriate APP expression on developing tissues, we generated transgenic flies that express wild-type human APP in the skeletal muscles, and then performed anatomical, electrophysiological, and behavioral analysis of the adults.

Results: We observed that neither muscle development nor animal longevity was compromised in these transgenic animals.

View Article and Find Full Text PDF

Recent advances involving high-throughput techniques for data generation and analysis have made familiarity with basic bioinformatics concepts and programs a necessity in the biological sciences. Undergraduate students increasingly need training in methods related to finding and retrieving information stored in vast databases. The rapid rise of bioinformatics as a new discipline has challenged many colleges and universities to keep current with their curricula, often in the face of static or dwindling resources.

View Article and Find Full Text PDF

otal (ota=olfactory trap abnormal), an X-linked mutation of Drosophila isolated by virtue of abnormal olfactory behavior, is shown to be an allele of rdgB (retinal degeneration B), a gene required for normal visual system physiology. rdgB function is shown to be necessary for olfactory response of both adult files and larvae, which have distinct olfactory systems. Electrophysiological recordings from the adult antenna indicate that rdgB is required for normal response in the peripheral olfactory system: some rdgB mutants show a delayed return to the resting potential following stimulation with ethyl acetate vapor.

View Article and Find Full Text PDF

The Drosophila how gene encodes a KH RNA binding protein with strong similarity to GLD-1 from nematodes and QK1 from mice. Here, we investigate the function of how during metamorphosis. We show that how RNA and protein are present in a variety of tissues, and phenotypic analyses of how mutants reveal multiple lethal phases and defects during metamorphosis.

View Article and Find Full Text PDF

In Drosophila melanogaster, fluctuations in 20-hydroxyecdysone (ecdysone) titer coordinate gene expression, cell death, and morphogenesis during metamorphosis. Our previous studies have supported the hypothesis that betaFTZ-F1 (an orphan nuclear receptor) provides specific genes with the competence to be induced by ecdysone at the appropriate time, thus directing key developmental events at the prepupal-pupal transition. We are examining the role of betaFTZ-F1 in morphogenesis.

View Article and Find Full Text PDF

Steroid hormones trigger a wide variety of cell-specific responses during animal development, but the mechanisms by which these systemic signals specify either cell division, differentiation, morphogenesis or death remain uncertain. Here, we analyze the function of the steroid-regulated genes betaFTZ-F1, BR-C, E74A, and E93 during salivary gland programmed cell death. While mutations in the betaFTZ-F1, BR-C, E74A, and E93 genes prevent destruction of salivary glands, only betaFTZ-F1 is required for DNA fragmentation.

View Article and Find Full Text PDF