Publications by authors named "Craig W Hogle"

We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.

View Article and Find Full Text PDF

High harmonic light sources make it possible to access attosecond timescales, thus opening up the prospect of manipulating electronic wave packets for steering molecular dynamics. However, two decades after the birth of attosecond physics, the concept of attosecond chemistry has not yet been realized; this is because excitation and manipulation of molecular orbitals requires precisely controlled attosecond waveforms in the deep UV, which have not yet been synthesized. Here, we present a unique approach using attosecond vacuum UV pulse-trains to coherently excite and control the outcome of a simple chemical reaction in a deuterium molecule in a non-Born-Oppenheimer regime.

View Article and Find Full Text PDF

Using a simple model of strong-field ionization of atoms that generalizes the well-known 3-step model from 1D to 3D, we show that the experimental photoelectron angular distributions resulting from laser ionization of xenon and argon display prominent structures that correspond to electrons that pass by their parent ion more than once before strongly scattering. The shape of these structures can be associated with the specific number of times the electron is driven past its parent ion in the laser field before scattering. Furthermore, a careful analysis of the cutoff energy of the structures allows us to experimentally measure the distance between the electron and ion at the moment of tunnel ionization.

View Article and Find Full Text PDF

Imaging and controlling reactions in molecules and materials at the level of electrons is a grand challenge in science, relevant to our understanding of charge transfer processes in chemistry, physics, and biology, as well as material dynamics. Direct access to the dynamic electron density as electrons are shared or transferred between atoms in a chemical bond would greatly improve our understanding of molecular bonding and structure. Using reaction microscope techniques, we show that we can capture how the entire valence shell electron density in a molecule rearranges, from molecular-like to atomic-like, as a bond breaks.

View Article and Find Full Text PDF