Publications by authors named "Craig W Hargis"

A novel calcium carbonate cement system that mimics the naturally occurring mineralization process of carbon dioxide to biogenic or geologic calcium carbonate deposits was developed utilizing carbon dioxide-containing flue gas and high-calcium industrial solid waste as raw materials. The calcium carbonate cement reaction is based on the polymorphic transformation from metastable vaterite to aragonite and can achieve >40 MPa compressive strength. Due to its unique properties, the calcium carbonate cement is well suited for building materials applications with controlled factory manufacturing processes that can take advantage of its rapid curing at elevated temperatures and lower density for competitive advantages.

View Article and Find Full Text PDF

This study investigated the material properties and hydration characteristics of calcium sulfoaluminate cement (CSA) based mortars cured under 3 different initial curing temperatures. Two CSA cements with different M-values were selected. Obtained experimental results of mechanical properties, dimensional stability, and heat release were explained by hydration characteristics from X-ray diffraction, thermal gravimetric analysis, porosimetry, and thermodynamic modeling.

View Article and Find Full Text PDF

This study investigated the hydration characteristics and strength development of calcium sulfoaluminate-belite (CSAB) cements incorporating calcium carbonate (CC) powders with various particle size distributions and different gypsum amounts. In general, the CSAB hydration was accelerated by the CC powder, but the acceleration and resulting strength improvement were more effective with finer CC powder. Regardless of the fineness of the CC powder, it took part in the hydration of CSAB cement, forming hemicarboaluminate and monocarboaluminate phases.

View Article and Find Full Text PDF