Publications by authors named "Craig V Byus"

The clinicopathological features of the hamster model of visceral leishmaniasis (VL) closely mimic active human disease. Studies in humans and hamsters indicate that the inability to control parasite replication in VL could be related to ineffective classical macrophage activation. Therefore, we hypothesized that the pathogenesis of VL might be driven by a program of alternative macrophage activation.

View Article and Find Full Text PDF

Increased polyamine production is observed in a variety of chronic neuroinflammatory disorders, but in vitro and in vivo studies yield conflicting data on the immunomodulatory consequences of their production. Ornithine decarboxylase (ODC) is the rate-limiting enzyme in endogenous polyamine production. To identify the role of polyamine production in CNS-intrinsic inflammatory responses, we defined CNS sites of ODC expression and the consequences of inhibiting ODC in response to intracerebral injection of LPS±IFNγ.

View Article and Find Full Text PDF

SLC3A2, a member of the solute carrier family, was identified by proteomics methods as a component of a transporter capable of exporting the diamine putrescine in the Chinese hamster ovary (CHO) cells selected for resistance to growth inhibition by high exogenous concentrations of putrescine. Putrescine transport was increased in inverted plasma membrane vesicles prepared from cells resistant to growth inhibition by putrescine compared with transport in inverted vesicles prepared from non-selected cells. Knockdown of SLC3A2 in human cells, using short hairpin RNA, caused an increase in putrescine uptake and a decrease in arginine uptake activity.

View Article and Find Full Text PDF

ODC is a labile protein subject to rapid turnover, and a conditional expression system providing long-term overexpression may be helpful in further understanding the biochemical properties of this enzyme and elucidating aspects of the polyamine biosynthetic pathway that have otherwise been difficult to study. HEK293 and LNCaP cell lines were engineered to stably and inducibly overexpress ODC using a Tet-on inducible construct. Clones from both cell lines were characterized by evaluating ODC mRNA expression, ODC activity, intracellular and extracellular polyamine levels, SSAT activity and growth kinetics.

View Article and Find Full Text PDF

Alpha-difluoromethylornithine (DFMO) inhibits the proto-oncogene ornithine decarboxylase (ODC) and is known to induce cell cycle arrest. However, the effect of DFMO on human neuroblastoma (NB) cells and the exact mechanism of DFMO-induced cell death are largely unknown. Treatment with DFMO in combination with SAM486A, an S-adenosylmethionine decarboxylase (AdoMetDC) inhibitor, has been shown to enhance polyamine pool depletion.

View Article and Find Full Text PDF

A number of years ago, our laboratory published a method for the isolation of small amounts of polyamines from cell culture media using the ion-exchange resin Bio-Rex 70. We have used this technique extensively to study the export of putrescine and cadaverine from cultured mammalian cells. Unfortunately, this method was highly inefficient in isolating the polyamines spermidine and spermine and was incapable of recovering the acetylated polyamine N(1)-acetylspermidine.

View Article and Find Full Text PDF

Nuclear receptors (NR) activate transcription by interacting with several different coactivator complexes, primarily via LXXLL motifs (NR boxes) of the coactivator that bind a common region in the ligand binding domain of nuclear receptors (activation function-2, AF-2) in a ligand-dependent fashion. However, how nuclear receptors distinguish between different sets of coactivators remains a mystery, as does the mechanism by which orphan receptors such as hepatocyte nuclear factor 4alpha (HNF4alpha) activate transcription. In this study, we show that HNF4alpha interacts with a complex containing vitamin D receptor (VDR)-interacting proteins (DRIPs) in the absence of exogenously added ligand.

View Article and Find Full Text PDF