Publications by authors named "Craig S Slater"

We apply a three-fold covariance imaging method to analyse previously acquired data [C. S. Slater et al.

View Article and Find Full Text PDF

The torsional motion of a molecule composed of two substituted benzene rings, linked by a single bond, is coherently controlled by a pair of strong (3×10^{13}  W cm^{-2}), nonresonant (800 nm) 200-fs-long laser pulses-both linearly polarized perpendicular to the single-bond axis. If the second pulse is sent at the time when the two benzene rings rotate toward (away from) each other the amplitude of the torsion is strongly enhanced (reduced). The torsional motion persists for more than 150 ps corresponding to approximately 120 torsional oscillations.

View Article and Find Full Text PDF

The development of sensors capable of detecting particles and radiation with both high time and high positional resolution is key to improving our understanding in many areas of science. Example applications of such sensors range from fundamental scattering studies of chemical reaction mechanisms through to imaging mass spectrometry of surfaces, neutron scattering studies aimed at probing the structure of materials, and time-resolved fluorescence measurements to elucidate the structure and function of biomolecules. In addition to improved throughput resulting from parallelisation of data collection - imaging of multiple different fragments in velocity-map imaging studies, for example - fast image sensors also offer a number of fundamentally new capabilities in areas such as coincidence detection.

View Article and Find Full Text PDF

We present the first multimass velocity-map imaging data acquired using a new ultrafast camera designed for time-resolved particle imaging. The PImMS (Pixel Imaging Mass Spectrometry) sensor allows particle events to be imaged with time resolution as high as 25 ns over data acquisition times of more than 100 μs. In photofragment imaging studies, this allows velocity-map images to be acquired for multiple fragment masses on each time-of-flight cycle.

View Article and Find Full Text PDF