Publications by authors named "Craig Neville"

This study presents the design, fabrication, and evaluation of a general platform for the creation of three-dimensional printed devices (3DPDs) for tissue engineering applications. As a demonstration, we modeled the liver with 3DPDs consisting of a pair of parallel millifluidic channels that function as portal-venous (PV) and hepatobiliary (HB) structures. Perfusion of medium or whole blood through the PV channel supports the hepatocyte-containing HB channel.

View Article and Find Full Text PDF

In vitro vascular wall bilayer models for drug testing and disease modeling must emulate the physical and biological properties of healthy vascular tissue and its endothelial barrier function. Both endothelial cell (EC)-vascular smooth muscle cell (SMC) interaction across the internal elastic lamina (IEL) and blood vessel stiffness impact endothelial barrier integrity. Polymeric porous track-etched membranes (TEM) typically represent the IEL in laboratory vascular bilayer models.

View Article and Find Full Text PDF

This study presents a novel surgical model developed to provide hematological support for implanted cellularized devices augmenting or replacing liver tissue function. Advances in bioengineering provide tools and materials to create living tissue replacements designed to restore that lost to disease, trauma, or congenital deformity. Such substitutes are often assembled and matured and need an immediate blood supply upon implantation, necessitating the development of supporting protocols.

View Article and Find Full Text PDF

Drug-induced vascular injury (DIVI) in preclinical animal models often leads to candidate compound termination during drug development. DIVI has not been documented in human clinical trials with drugs that cause DIVI in preclinical animals. A robust human preclinical assay for DIVI is needed as an early vascular injury screen.

View Article and Find Full Text PDF

Objectives: Creation of functional, durable vasculature remains an important goal within the field of regenerative medicine. Engineered biological vasculature has the potential to restore or improve human tissue function. We hypothesized that the pleotropic effects of insulin-like growth factor 1 (IGF1) would enhance the engineering of capillary-like vasculature.

View Article and Find Full Text PDF

Biological surgical scaffolds are used in plastic and reconstructive surgery to support structural reinforcement and regeneration of soft tissue defects. Macrophage and fibroblast cell populations heavily regulate scaffold integration into host tissue following implantation. In the present study, the biological host response to a commercially available surgical scaffold (Meso BioMatrix Surgical Mesh (MBM)) was investigated for up to 9 weeks after subcutaneous implantation; this scaffold promoted superior cell migration and infiltration previously in in vitro studies relative to other commercially available scaffolds.

View Article and Find Full Text PDF

In pre-clinical safety studies, drug-induced vascular injury (DIVI) is defined as an adverse response to a drug characterized by degenerative and hyperplastic changes of endothelial cells and vascular smooth muscle cells. Inflammation may also be seen, along with extravasation of red blood cells into the smooth muscle layer (i.e.

View Article and Find Full Text PDF

Background: Adequate biomaterials for tissue engineering bone and replacement of bone in clinical settings are still being developed. Previously, the combination of mesenchymal stem cells in hydrogels and calcium-based biomaterials in both in vitro and in vivo experiments has shown promising results. However, results may be optimized by careful selection of the material combination.

View Article and Find Full Text PDF

Decellularized extracellular matrix (ECM) biomaterials are increasingly used in regenerative medicine for abdominal tissue repair. Emerging ECM biomaterials with greater compliance target surgical procedures like breast and craniofacial reconstruction to enhance aesthetic outcome. Clinical studies report improved outcomes with newly designed ECM scaffolds, but their comparative biological characteristics have received less attention.

View Article and Find Full Text PDF

Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses.

View Article and Find Full Text PDF

Objective: Our goal was to engineer cartilage in vivo using auricular chondrocytes that underwent clinically relevant expansion and using methodologies that could be easily translated into health care practice.

Design: Sheep and human chondrocytes were isolated from auricular cartilage biopsies and expanded in vitro. To reverse dedifferentiation, expanded cells were either mixed with cryopreserved P0 chondrocytes at the time of seeding onto porous collagen scaffolds or proliferated with basic fibroblast growth factor (bFGF).

View Article and Find Full Text PDF

Vascularization is a key challenge in tissue engineering. Three-dimensional structure and microcirculation are two fundamental parameters for evaluating vascularization. Microscopic techniques with cellular level resolution, fast continuous observation, and robust 3D postimage processing are essential for evaluation, but have not been applied previously because of technical difficulties.

View Article and Find Full Text PDF

Surgical scaffold materials manufactured from donor human or animal tissue are increasingly being used to promote soft tissue repair and regeneration. The clinical product consists of the residual extracellular matrix remaining after a rigorous decellularization process. Optimally, the material provides both structural support during the repair period and cell guidance cues for effective incorporation into the regenerating tissue.

View Article and Find Full Text PDF

Background: Hepatic stellate cells (HSC) play a major role in the progression of liver fibrosis.

Aim: The aim of our study was to investigate whether rat HSC cultured on a nanofiber membrane (NM) retain their quiescent phenotype during both short- and long-term culture and whether activated HSC revert to a quiescent form when re-cultured on NM.

Methods: Rat HSC cultured for 1 day on plastic plates (PP) were used as quiescent HSC, while cells cultured for 1 week on PP were considered to be activated HSC.

View Article and Find Full Text PDF

Small facial skeletal muscles often have no autologous donor source to effect surgical reconstruction. Autologously derived muscles could be engineered for replacement tissue, but must be vascularized and innervated to be functional. As a critical step, engineered muscle must mimic the morphology, protein and gene expression, and function of native muscle.

View Article and Find Full Text PDF

Objective: This study evaluates a novel liver-assist device platform with a microfluidics-modeled vascular network in a femoral arteriovenous shunt in rats.

Summary Of Background Data: Liver-assist devices in clinical trials that use pumps to force separated plasma through packed beds of parenchymal cells exhibited significant necrosis with a negative impact on function.

Methods: Microelectromechanical systems technology was used to design and fabricate a liver-assist device with a vascular network that supports a hepatic parenchymal compartment through a nanoporous membrane.

View Article and Find Full Text PDF

Mesothelium tissues such as peritoneum and pleura have a thin and strong layer of extracellular matrix that supports mesothelial cells capable of rapid healing. Decellularized porcine mesothelium was characterized for strength, composition of the matrix and biological activity. The tensile strength of the material was 40.

View Article and Find Full Text PDF

Decellularized dermis materials demonstrate considerable utility in surgical procedures including hernia repair and breast reconstruction. A new decellularized porcine dermis material has been developed that retains many native extracellular matrix (ECM) proteins and cytokines. This material has substantial mechanical strength with maximum tensile strength of 141.

View Article and Find Full Text PDF

The complex intricate architecture of the liver is crucial to hepatic function. Standard protocols used for enzymatic digestion to isolate hepatocytes destroy tissue structure and result in significant loss of synthetic, metabolic, and detoxification processes. We describe a process using mechanical dissociation to generate hepatic organoids with preserved intrinsic tissue architecture from swine liver.

View Article and Find Full Text PDF

Clinical protocols utilize bone marrow to seed synthetic and decellularized allogeneic bone grafts for enhancement of scaffold remodeling and fusion. Marrow-derived cytokines induce host neovascularization at the graft surface, but hypoxic conditions cause cell death at the core. Addition of cellular components that generate an extensive primitive plexus-like vascular network that would perfuse the entire scaffold upon anastomosis could potentially yield significantly higher-quality grafts.

View Article and Find Full Text PDF

Pericytes are essential to vascularization, but the purification and characterization of pericytes remain unclear. Smooth muscle actin alpha (alpha-SMA) is one marker [corrected] of pericytes. The aim of this study is to purify the alpha-SMA positive cells from bone marrow and study the characteristics of these cells and the interaction between alpha-SMA positive cells and endothelial cells.

View Article and Find Full Text PDF

Regenerative technology promises to alleviate the problem of limited donor supply for bone or organ transplants. Most expensive and time consuming is cell expansion in laboratories. We propose a method of magnetically enriched osteoprogenitor stem cells, dispersed in self-assembling hydrogels and applied onto new ultra-high resolution, jet-based, three-dimensional printing of living human bone in a single-step for in situ bone regeneration.

View Article and Find Full Text PDF

Schwann cells and primary progenitor cells improve regeneration across peripheral nerve defects. This study examined the impact of immortalized neural precursor cells on regeneration of rat nerve defects. Across 10-mm gaps, neuromas formed without neural cables with C17.

View Article and Find Full Text PDF

Poly(glycerol sebacate) (PGS), a promising scaffold material for soft tissue engineering applications, is a soft, tough elastomer with excellent biocompatibility. However, the rapid in vivo degradation rate of PGS limits its use as a scaffold material. To determine the impact of crosslink density on degradation rate, a family of PGS materials was synthesized by incrementally increasing the curing time from 42 to 144 h, at 120 degrees C and 10 mTorr vacuum.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7jlejtooneoeh4pjgk96crj2tlq0r8k0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once