For the description of vibrational effects in electronic spectra, harmonic vibrations are a convenient and widespread model. However, spectra of larger organic molecules in solution usually exhibit signs of vibrational anharmonicity, as revealed by deviation from the mirror image symmetry between linear absorption and emission spectra of the harmonic case. For perylene and terylene, two molecules with rigid Pi-electron systems and strong vibrational-electronic coupling, we employ a simple but effective theoretical model, which introduces cubic anharmonicity in the potentials of electronic surfaces.
View Article and Find Full Text PDFCarotenoids are fundamental building blocks of natural light harvesters with convoluted and ultrafast energy deactivation networks. In order to disentangle such complex relaxation dynamics, several studies focused on transient absorption measurements and their dependence on the pump wavelength. However, such findings are inconclusive and sometimes contradictory.
View Article and Find Full Text PDFThe peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed.
View Article and Find Full Text PDFCenter line slope (CLS) analysis in 2D infrared spectroscopy has been extensively used to extract frequency-frequency correlation functions of vibrational transitions. We apply this concept to 2D electronic spectroscopy, where CLS is a measure of electronic gap fluctuations. The two domains, infrared and electronic, possess differences: In the infrared, the frequency fluctuations are classical, often slow and Gaussian.
View Article and Find Full Text PDFNatural and artificial light-harvesting processes have recently gained new interest. Signatures of long-lasting coherence in spectroscopic signals of biological systems have been repeatedly observed, albeit their origin is a matter of ongoing debate, as it is unclear how the loss of coherence due to interaction with the noisy environments in such systems is averted. Here we report experimental and theoretical verification of coherent exciton-vibrational (vibronic) coupling as the origin of long-lasting coherence in an artificial light harvester, a molecular J-aggregate.
View Article and Find Full Text PDFEnergy relaxation between two electronic states of a molecule is mediated by a set of relevant vibrational states. We describe this fundamental process in a fully quantum mechanical framework based on first principles. This approach explains population transfer rates as well as describes the entire transient absorption signal as vibronic transitions between electronic states.
View Article and Find Full Text PDFThe initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra.
View Article and Find Full Text PDFFemtosecond time resolved pump-probe protein X-ray crystallography requires highly accurate measurements of the photoinduced structure factor amplitude differences. In the case of femtosecond photolysis of single P63 crystals of the Photoactive Yellow Protein, it is shown that photochemical dynamics place a considerable restraint on the achievable time resolution due to the requirement to stretch and add second order dispersion in order to generate threshold concentration levels in the interaction region. Here, we report on using a 'quasi-cw' approach to use the rotation method with monochromatic radiation and 2 eV bandwidth at 9.
View Article and Find Full Text PDFLong-lived oscillations in 2D spectra of chlorophylls are at the heart of an ongoing debate. Their physical origin is either a multipigment effect, such as excitonic coherence, or localized vibrations. We show how relative phase differences of diagonal- and cross-peak oscillations can distinguish between electronic and vibrational (vibronic) effects.
View Article and Find Full Text PDFWe report an experimental design for two-dimensional electronic spectroscopy (2D-ES) that avoids the need to measure notoriously weak pump-probe spectra. Retaining a fully non-collinear folded boxcar geometry, the described layout replaces pump-probe with heterodyned transient grating (het-TG). The absorptive component of the het-TG signal is measured directly, following a straightforward optimization routine.
View Article and Find Full Text PDFThe quantum yield of photoisomerisation of the photoactive yellow protein (PYP) strongly depends on peak power and wavelength with femtosecond optical excitation. Using systematic power titrations and addition of second order dispersion resulting in 140, 300 and 600 fs pulse durations, the one and multi-photon cross-sections at 400, 450 and 490 nm have been assessed from transient absorption spectroscopy and additionally the Z-scan technique. Applying a target model that incorporates photoselection theory, estimates for the cross-sections for stimulated emission and absorption of the first excited state, the amount of ultrafast internal conversion and the underlying species associated dynamics have been determined.
View Article and Find Full Text PDFThe primary photoreactions of the red absorbing ground state (Pr) of the cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 involve C15═C16 Z-E photoisomerization of its phycocyanobilin chromophore. The first observable product intermediate in pump-probe measurements of the photocycle, "Lumi-R", is formed with picosecond kinetics and involves excited state decay reactions that have 3 and 14 ps time constants. Here, we have studied the photochemical formation of the Lumi-R intermediate using multipulse picosecond visible spectroscopy.
View Article and Find Full Text PDFCurrent advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio-) physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose.
View Article and Find Full Text PDFThe self-assembly of specific proteins to form insoluble amyloid fibrils is a characteristic feature of a number of age-related and debilitating diseases. Lipid-free human apolipoprotein C-II (apoC-II) forms characteristic amyloid fibrils and is one of several apolipoproteins that accumulate in amyloid deposits located within atherosclerotic plaques. X-ray diffraction analysis of aligned apoC-II fibrils indicated a simple cross-β-structure composed of two parallel β-sheets.
View Article and Find Full Text PDFBackground: Although there are many in vivo studies evaluating lumbar disc injections, no studies have described the occurrence of intravascular uptake of contrast on discography. This phenomenon, however, has been well documented for other fluoroscopically-guided, contrast-enhanced spinal injections.
Objectives: To document the phenomenon and incidence of intravascular uptake during fluoroscopically-guided, contrast-enhanced lumbar disc injections.
We report the use of spectrally resolved femtosecond two-color three-pulse photon echoes as a potentially powerful multidimensional technique for studying vibrational and electronic dynamics in complex molecules. The wavelengths of the pump and probe laser pulses are found to have a dramatic effect on the spectrum of the photon echo signal and can be chosen to select different sets of energy levels in the vibrational manifold, allowing a study of the dynamics and vibrational splitting in either the ground or the excited state. The technique is applied to studies of the dynamics of vibrational electronic states in the dye molecule Rhodamine 101 in methanol.
View Article and Find Full Text PDF