Publications by authors named "Craig L Fuller"

Article Synopsis
  • HIV-1 can infect T cells via a process involving dendritic cells that express DC-SIGN, which helps transfer the virus to CD4+ T cells.
  • A specific group of B cells in the blood and tonsils show increased expression of DC-SIGN after stimulation, allowing them to capture and internalize HIV-1.
  • The study finds that blocking DC-SIGN on B cells prevents the transmission of HIV-1 to T cells, highlighting its potential role in the progression of HIV-1 infection.
View Article and Find Full Text PDF

Pulmonary infections and dysfunction are frequent outcomes during the development of immunodeficiency associated with human immunodeficiency virus type 1 (HIV-1) infection, and obtaining a better understanding of the immunologic changes that occur in lungs following HIV-1 infection will provide a foundation for the development of further intervention strategies. We sought here to identify changes in the pulmonary immune environment that arise during simian immunodeficiency virus (SIV) infection of rhesus macaques, which serves as an excellent model system for HIV-1 infection and disease. To examine the gene expression profiles of macaque lung tissues following infection with the pathogenic SIV/DeltaB670 isolate, we performed cDNA microarray hybridizations with lung total RNAs using two commercially available cDNA arrays and a custom-fabricated, immunologically focused macaque cDNA microarray.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) is an extraordinarily successful human pathogen, one of the major causes of death by infectious disease worldwide. A key issue for the study of tuberculosis is to understand why individuals infected with Mtb experience different clinical outcomes. To better understand the dynamics of Mtb infection and immunity, we coupled nonhuman primate experiments with a mathematical model we previously developed that qualitatively and quantitatively captures important processes of cellular priming and activation.

View Article and Find Full Text PDF

Tuberculosis remains a major public health problem worldwide. Chemokines and cytokines organize and direct infiltrating cells to sites of infection, and these molecules likely play crucial roles in granuloma formation and maintenance. To address this issue, we used in situ hybridization (ISH) to measure chemokine and cytokine mRNA expression levels and patterns directly in lung tissues from cynomolgus macaques (Macaca fascicularis) experimentally infected with a low dose of virulent Mycobacterium tuberculosis.

View Article and Find Full Text PDF

The Nef protein of Simian immunodeficiency virus (SIV) associates with multiple T lymphocyte signaling proteins, including the T cell receptor (TCR) zeta chain. We demonstrate here that these interactions are conserved and highly specific. Nefs derived from genetically diverse strains of SIV (SIV(mac)239, SIV(smm)PBj, and SIV(smm)DeltaB670) all interacted with TCR zeta on two separate domains, referred to as SIV Nef interaction domains (SNIDs), as examined in both yeast two-hybrid and glutathione-S-transferase (GST) fusion protein pull-down assays.

View Article and Find Full Text PDF

The extent to which simian immunodeficiency virus (SIV) replication in lung tissues contributes to the pool of viruses replicating during acute infection is incompletely understood. To address this issue, in situ hybridization was used to examine SIV replication in multiple lobes of lung from rhesus macaques infected with pathogenic SIV. Despite widespread viral replication in lymphoid and intestinal tissues, the lungs during acute infection harbored rare productively infected cells.

View Article and Find Full Text PDF

Chemokines are small chemoattractant cytokines involved in normal and pathological immune processes. Although extensive nucleotide sequence data are available for human and murine chemokine cDNA sequences, very few data are currently available regarding rhesus macaque sequences. To increase our understanding of immune function in nonhuman primates, we have used reverse-transcription polymerase chain reaction (RT-PCR) to clone and sequence rhesus macaque cDNAs from each of the C, CC, CXC, and CX3C groups of chemokines.

View Article and Find Full Text PDF

Chemokines are important mediators of cell trafficking during immune inductive and effector activities, and dysregulation of their expression might contribute to the pathogenesis of human immunodeficiency virus type 1 and the related simian immunodeficiency virus (SIV). To understand better the effects of SIV infection on lymphoid tissues in rhesus macaques, we examined chemokine messenger RNA (mRNA) expression patterns by using DNA filter array hybridization. Of the 34 chemokines examined, the interferon gamma (IFN-gamma)-inducible chemokine CXC chemokine ligand 9/monokine induced by interferon-gamma (CXCL9/Mig) was one of the most highly up-regulated chemokines in rhesus macaque spleen tissue early after infection with pathogenic SIV.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: