Publications by authors named "Craig Kletzing"

Article Synopsis
  • - The Van Allen Probes mission used a distributed operational model where the Mission Operations Center (MOC) managed overall tasks while individual instrument-specific Science Operations Centers (SOCs) focused on data acquisition, processing, and instrument performance for their specific instruments.
  • - Significant collaboration between the instrument SOCs and the project science team led to crucial discoveries through coordinated observations and cross-calibration of instruments during the mission.
  • - Key lessons learned emphasized the value of having dedicated SOCs, which improved the quality and timeliness of instrument data for scientists studying magnetospheric and radiation belt phenomena.
View Article and Find Full Text PDF

We investigate the nature of small-scale irregularities observed in the cusp by the Twin Rockets to Investigate Cusp Electrodynamics-2 (TRICE-2) in regions of enhanced phase scintillations and high-frequency coherent radar backscatter. We take advantage of the fact that the irregularities were detected by spatially separated probes, and present an interferometric analysis of both the observed electron density and electric field fluctuations. We provide evidence that fluctuations spanning a few decameters to about a meter have low phase velocity in the plasma reference frame and are nondispersive, confirming that decameter-scale irregularities follow the  ×  velocity.

View Article and Find Full Text PDF

This paper presents the highlights of joint observations of the inner magnetosphere by the Arase spacecraft, the Van Allen Probes spacecraft, and ground-based experiments integrated into spacecraft programs. The concurrent operation of the two missions in 2017-2019 facilitated the separation of the spatial and temporal structures of dynamic phenomena occurring in the inner magnetosphere. Because the orbital inclination angle of Arase is larger than that of Van Allen Probes, Arase collected observations at higher -shells up to .

View Article and Find Full Text PDF

A range of nonlinear wave structures, including Langmuir waves, unipolar electric fields, and bipolar electric fields, are often observed in association with whistler-mode chorus waves in near-Earth space. We demonstrate that the three seemingly different nonlinear wave structures originate from the same nonlinear electron trapping process by whistler-mode chorus waves. The ratio of the Landau resonant velocity to the electron thermal velocity controls the type of nonlinear wave structures that will be generated.

View Article and Find Full Text PDF

Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeVelectron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere.

View Article and Find Full Text PDF

Magnetospheric banded chorus is enhanced whistler waves with frequencies <Ω , where Ω is the electron cyclotron frequency, and a characteristic spectral gap at ≃Ω /2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012.

View Article and Find Full Text PDF