Publications by authors named "Craig Karr"

Recent studies have reported that the peroxisome proliferator-activated receptor gamma (PPARγ) pathway is activated in approximately 40% of patients with muscle-invasive bladder cancer. This led us to investigate pharmacological repression of PPARγ as a possible intervention strategy. Here, we characterize PPARγ antagonists and inverse agonists and find that the former behave as silent ligands, whereas inverse agonists (T0070907 and SR10221) repress downstream PPARγ target genes leading to growth inhibition in bladder cancer cell lines.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is an aggressive liver malignancy that is difficult to treat with no approved biomarker based targeted therapies. FGF19-FGFR4 signaling blockade has been recently identified as a promising avenue for treatment of a subset of HCC patients. Using HCC relevant xenograft and PDX models, we show that Lenvatinib, an approved multi-kinase inhibitor, strongly enhanced the efficacy of FGFR4 inhibitor H3B-6527.

View Article and Find Full Text PDF

Fibroblast growth factor receptors (FGFR) 2 and 3 have been established as drivers of numerous types of cancer with multiple drugs approved or entering late stage clinical trials. A limitation of current inhibitors is vulnerability to gatekeeper resistance mutations. Using a combination of targeted high-throughput screening and structure-based drug design, we have developed a series of aminopyrazole based FGFR inhibitors that covalently target a cysteine residue on the P-loop of the kinase.

View Article and Find Full Text PDF

Dysregulation of RNA splicing by spliceosome mutations or in cancer genes is increasingly recognized as a hallmark of cancer. Small molecule splicing modulators have been introduced into clinical trials to treat solid tumors or leukemia bearing recurrent spliceosome mutations. Nevertheless, further investigation of the molecular mechanisms that may enlighten therapeutic strategies for splicing modulators is highly desired.

View Article and Find Full Text PDF

Mutations in estrogen receptor alpha (ERα) that confer resistance to existing classes of endocrine therapies are detected in up to 30% of patients who have relapsed during endocrine treatments. Because a significant proportion of therapy-resistant breast cancer metastases continue to be dependent on ERα signaling, there remains a critical need to develop the next generation of ERα antagonists that can overcome aberrant ERα activity. Through our drug-discovery efforts, we identified H3B-5942, which covalently inactivates both wild-type and mutant ERα by targeting Cys530 and enforcing a unique antagonist conformation.

View Article and Find Full Text PDF

Somatic mutations in spliceosome proteins lead to dysregulated RNA splicing and are observed in a variety of cancers. These genetic aberrations may offer a potential intervention point for targeted therapeutics. SF3B1, part of the U2 small nuclear RNP (snRNP), is targeted by splicing modulators, including E7107, the first to enter clinical trials, and, more recently, H3B-8800.

View Article and Find Full Text PDF

Genomic analyses of cancer have identified recurrent point mutations in the RNA splicing factor-encoding genes SF3B1, U2AF1, and SRSF2 that confer an alteration of function. Cancer cells bearing these mutations are preferentially dependent on wild-type (WT) spliceosome function, but clinically relevant means to therapeutically target the spliceosome do not currently exist. Here we describe an orally available modulator of the SF3b complex, H3B-8800, which potently and preferentially kills spliceosome-mutant epithelial and hematologic tumor cells.

View Article and Find Full Text PDF

Activation of the fibroblast growth factor receptor FGFR4 by FGF19 drives hepatocellular carcinoma (HCC), a disease with few, if any, effective treatment options. While a number of pan-FGFR inhibitors are being clinically evaluated, their application to FGF19-driven HCC may be limited by dose-limiting toxicities mediated by FGFR1-3 receptors. To evade the potential limitations of pan-FGFR inhibitors, we generated H3B-6527, a highly selective covalent FGFR4 inhibitor, through structure-guided drug design.

View Article and Find Full Text PDF

Pladienolide, herboxidiene and spliceostatin have been identified as splicing modulators that target SF3B1 in the SF3b subcomplex. Here we report that PHF5A, another component of this subcomplex, is also targeted by these compounds. Mutations in PHF5A-Y36, SF3B1-K1071, SF3B1-R1074 and SF3B1-V1078 confer resistance to these modulators, suggesting a common interaction site.

View Article and Find Full Text PDF

A total synthesis of the natural product 6-deoxypladienolide D (1) has been achieved. Two noteworthy attributes of the synthesis are (1) a late-stage allylic oxidation which proceeds with full chemo-, regio-, and diastereoselectivity and (2) the development of a scalable and cost-effective synthetic route to support drug discovery efforts. 6-Deoxypladienolide D (1) demonstrates potent growth inhibition in a mutant SF3B1 cancer cell line, high binding affinity to the SF3b complex, and inhibition of pre-mRNA splicing.

View Article and Find Full Text PDF

Uridine-5'-diphospho-N-acetylgalactosamine (UDP-GalNAc) is required in the formation of the outer filamentous wall of Giardia and is synthesized by inducible enzymes in the cytosol of encysting trophozoites. In this study, an inducible enzyme activity that is associated with a particle population isolated from encysting Giardia is reported, and this activity exclusively incorporates [1-(14)C]GalNAc (from UDP-[(14)C]GalNAc) into an ethanol precipitate with the same properties as the filamentous cyst wall of GIARDIA: This ethanol precipitate exhibits characteristics of Giardia cyst wall filaments in that both contain GalNAc as the only sugar moieties and are SDS-insoluble, proteinase- and alkali-resistant and acid-hydrolysable. However, since the precise chemical nature of the ethanol precipitate remains unknown, this enzyme activity is referred to tentatively as cyst wall synthase (CWS).

View Article and Find Full Text PDF

Assembly of a protective cyst wall by Giardia is essential for the survival of the parasite outside the host intestine and for transmission among susceptible hosts. The structure of the G. intestinalis filamentous cyst wall was studied by chemical methods, mass spectrometry, and (1)H nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionknhj05004uc9c8420hf5ka25tumoutui): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once