Lung cancer is the leading cause of cancer deaths in the United States. New targeted therapies against the once-deemed undruggable oncogenic KRAS are changing current therapeutic paradigms. However, resistance to targeted KRAS inhibitors almost inevitably occurs; resistance can be driven by tumor cell-intrinsic changes or by changes in the microenvironment.
View Article and Find Full Text PDFBackground: Chronic obstructive pulmonary disease (COPD) exhibits considerable progression heterogeneity. We hypothesized that elastic principal graph analysis (EPGA) would identify distinct clinical phenotypes and their longitudinal relationships.
Methods: Cross-sectional data from 8,972 tobacco-exposed COPDGene participants, with and without COPD, were used to train a model with EPGA, using thirty clinical, physiologic and CT features.
Bronchiolitis obliterans syndrome (BOS) after hematopoietic cell transplantation (HCT) is associated with substantial morbidity and mortality. Quantitative computed tomography (qCT) can help diagnose advanced BOS meeting National Institutes of Health (NIH) criteria (NIH-BOS) but has not been used to diagnose early, often asymptomatic BOS (early BOS), limiting the potential for early intervention and improved outcomes. Using pulmonary function tests (PFTs) to define NIH-BOS, early BOS, and mixed BOS (NIH-BOS with restrictive lung disease) in patients from 2 large cancer centers, we applied qCT to identify early BOS and distinguish between types of BOS.
View Article and Find Full Text PDFBackground: Effective detection of early lung disease in cystic fibrosis (CF) is critical to understanding early pathogenesis and evaluating early intervention strategies. We aimed to compare ability of several proposed sensitive functional tools to detect early CF lung disease as defined by CT structural disease in school aged children.
Methods: 50 CF subjects (mean±SD 11.
Background: Chronic lung allograft dysfunction (CLAD) is the leading long-term cause of poor outcomes after transplant and manifests by fibrotic remodeling of small airways and/or pleuroparenchymal fibroelastosis. This study evaluated the effect of pirfenidone on quantitative radiographic and pulmonary function assessment in patients with CLAD.
Methods: We performed a single-center, 6-month, randomized, placebo-controlled trial of pirfenidone in patients with CLAD.
Background: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline.
View Article and Find Full Text PDFThis manuscript has been withdrawn by the authors due to a dispute over co-first authorship that is currently being arbitrated by the medical school at our institution. Therefore, the authors do not wish this work to be cited as reference for the project. Upon completion of the arbitration process, we will take steps to revert the current withdrawn status.
View Article and Find Full Text PDFUnlabelled: Idiopathic pulmonary fibrosis (IPF) is characterized by progressive, often fatal loss of lung function due to overactive collagen production and tissue scarring. Patients with IPF have a sevenfold-increased risk of developing lung cancer. The COVID-19 pandemic has increased the number of patients with lung diseases, and infection can worsen prognoses for those with chronic lung diseases and disease-associated cancer.
View Article and Find Full Text PDFRationale And Objectives: Small airways disease (SAD) and emphysema are significant components of chronic obstructive pulmonary disease (COPD), a heterogenous disease where predicting progression is difficult. SAD, a principal cause of airflow obstruction in mild COPD, has been identified as a precursor to emphysema. Parametric Response Mapping (PRM) of chest computed tomography (CT) can help distinguish SAD from emphysema.
View Article and Find Full Text PDFThe purpose of this study was to anatomically correlate ventilation defects with regions of air trapping by whole lung, lung lobe, and airway segment in the context of airway mucus plugging in asthma. A total of 34 asthmatics [13M:21F, 13 mild/moderate, median age (range) of 49.5 (36.
View Article and Find Full Text PDFObjectives: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients, and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline.
View Article and Find Full Text PDFEarly detection of lung cancer is critical for improvement of patient survival. To address the clinical need for efficacious treatments, genetically engineered mouse models (GEMM) have become integral in identifying and evaluating the molecular underpinnings of this complex disease that may be exploited as therapeutic targets. Assessment of GEMM tumor burden on histopathological sections performed by manual inspection is both time consuming and prone to subjective bias.
View Article and Find Full Text PDFThe purpose of this study was to train and validate machine learning models for predicting rapid decline of forced expiratory volume in 1 s (FEV) in individuals with a smoking history at-risk-for chronic obstructive pulmonary disease (COPD), Global Initiative for Chronic Obstructive Lung Disease (GOLD 0), or with mild-to-moderate (GOLD 1-2) COPD. We trained multiple models to predict rapid FEV decline using demographic, clinical and radiologic biomarker data. Training and internal validation data were obtained from the COPDGene study and prediction models were validated against the SPIROMICS cohort.
View Article and Find Full Text PDFThe E3 ubiquitin ligase APC/C-Cdh1 maintains the G0/G1 state, and its inactivation is required for cell cycle entry. We reveal a novel role for Fas-associated protein with death domain (FADD) in the cell cycle through its function as an inhibitor of APC/C-Cdh1. Using real-time, single-cell imaging of live cells combined with biochemical analysis, we demonstrate that APC/C-Cdh1 hyperactivity in FADD-deficient cells leads to a G1 arrest despite persistent mitogenic signaling through oncogenic EGFR/KRAS.
View Article and Find Full Text PDFBackground: Assessment and selection of donor lungs remains largely subjective and experience based. Criteria to accept or decline lungs are poorly standardized and are not compliant with the current donor pool. Using ex vivo CT images, we investigated the use of a CT-based machine learning algorithm for screening donor lungs prior to transplantation.
View Article and Find Full Text PDFObjectives: Quantitative computed tomography (QCT) offers some promising markers to quantify cystic fibrosis (CF)-lung disease. Air trapping may precede irreversible bronchiectasis; therefore, the temporal interdependencies of functional and structural lung disease need to be further investigated. We aim to quantify airway dimensions and air trapping on chest CT of school-age children with mild CF-lung disease over two years.
View Article and Find Full Text PDFInt J Chron Obstruct Pulmon Dis
May 2022
Chronic obstructive pulmonary disease (COPD) is heterogenous in its clinical manifestations and disease progression. Patients often have disease courses that are difficult to predict with readily available data, such as lung function testing. The ability to better classify COPD into well-defined groups will allow researchers and clinicians to tailor novel therapies, monitor their effects, and improve patient-centered outcomes.
View Article and Find Full Text PDFChronic rejection of lung allografts has two major subtypes, bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS), which present radiologically either as air trapping with small airways disease or with persistent pleuroparenchymal opacities. Parametric response mapping (PRM), a computed tomography (CT) methodology, has been demonstrated as an objective readout of BOS and RAS and bears prognostic importance, but has yet to be correlated to biological measures. Using a topological technique, we evaluate the distribution and arrangement of PRM-derived classifications of pulmonary abnormalities from lung transplant recipients undergoing redo-transplantation for end-stage BOS (N = 6) or RAS (N = 6).
View Article and Find Full Text PDFPurpose: Recent advancements in functional lung imaging have been developed to improve clinicians' knowledge of patient pulmonary condition prior to treatment. Ultimately, it may be possible to employ these functional imaging modalities to tailor radiation treatment plans to optimize patient outcome and mitigate pulmonary complications. Parametric response mapping (PRM) is a computed tomography (CT)-based functional lung imaging method that utilizes a voxel-wise image analysis technique to classify lung abnormality phenotypes, and has previously been shown to be effective at assessing lung complication risk in diagnostic applications.
View Article and Find Full Text PDF