Nutritional ketosis has been proven effective for neurometabolic conditions and disorders linked to metabolic dysregulation. While inducing nutritional ketosis, ketogenic diet (KD) can improve motor performance in the context of certain disease states, but it is unknown whether exogenous ketone supplements-alternatives to KDs-may have similar effects. Therefore, we investigated the effect of ketone supplements on motor performance, using accelerating rotarod test and on postexercise blood glucose and -beta-hydroxybutyrate (-βHB) levels in rodent models with and without pathology.
View Article and Find Full Text PDFDiseases involving inflammation and oxidative stress can be exacerbated by high blood glucose levels. Due to tight metabolic regulation, safely reducing blood glucose can prove difficult. The ketogenic diet (KD) reduces absolute glucose and insulin, while increasing fatty acid oxidation, ketogenesis, and circulating levels of β-hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone.
View Article and Find Full Text PDFBackground: Ketogenic diet (KD) and exogenous ketone supplements can evoke sustained ketosis, which may modulate sleep and sleep-like effects. However, no studies have been published examining the effect of ketosis on the onset of general isoflurane induced anesthesia. Therefore, we investigated the effect of the KD and different exogenous ketogenic supplements on the onset of akinesia induced by inhalation of isoflurane.
View Article and Find Full Text PDFNutritional ketosis has been proven effective for seizure disorders and other neurological disorders. The focus of this study was to determine the effects of ketone supplementation on anxiety-related behavior in Sprague-Dawley (SPD) and Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. We tested exogenous ketone supplements added to food and fed chronically for 83 days in SPD rats and administered sub-chronically for 7 days in both rat models by daily intragastric gavage bolus followed by assessment of anxiety measures on elevated plus maze (EPM).
View Article and Find Full Text PDFAmyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease, is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and eventual death from respiratory failure. There is currently no cure or effective treatment for ALS. Besides motor neuron degeneration, ALS is associated with impaired energy metabolism, which is pathophysiologically linked to mitochondrial dysfunction and glutamate excitotoxicity.
View Article and Find Full Text PDF