Publications by authors named "Craig Giroux"

Background: Despite more aggressive screening across all demographics and gradual declines in mortality related to prostate cancer (PCa) in the United States, disparities among populations persist. A substantial proportion of African American men (AAM) have a higher overall incidence, earlier age of onset, increased proportion of clinically advanced disease, and increased bone metastases and mortality from PCa compared to European American men (EAM). Limited early evidence indicates that underlying causes for disparities may be observed in tumor-specific gene expression programs.

View Article and Find Full Text PDF

Hydroxy fatty acids are critical lipid mediators involved in various pathophysiologic functions. We cloned and identified GPR31, a plasma membrane orphan G protein-coupled receptor that displays high affinity for the human 12-lipoxygenase-derived product 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE). Thus, GPR31 is named 12-(S)-HETE receptor (12-HETER) in this study.

View Article and Find Full Text PDF

We have previously shown that SUM-149 human breast cancer cells require an amphiregulin (AREG) autocrine loop for cell proliferation. We also demonstrated that AREG can increase epidermal growth factor receptor (EGFR) stability and promote EGFR localization to the plasma membrane. In the present studies we successfully knocked-down AREG expression in SUM-149 cells by lentiviral infection of AREG shRNA.

View Article and Find Full Text PDF

Amplification of the 8p11-12 region has been found in about 15% of human breast cancers and is associated with poor prognosis. Earlier, we used genomic analysis of copy number and gene expression to perform a detailed analysis of the 8p11-12 amplicon to identify candidate oncogenes in breast cancer. We identified 21 candidate genes and provided evidence that three genes, namely, LSM-1, TC-1, and BAG4, have transforming properties when overexpressed.

View Article and Find Full Text PDF

Activated oncogenes are the dominant drivers of malignant progression in human cancer, yet little is known about how the transformation from proto-oncogene to activated oncogene drives the expression of transformed phenotypes. An isogenic model of HER-2-mediated transformation of human mammary epithelial cells was used along with HER-2-amplified human breast cancers to investigate how HER-2 activation alters its properties as a signaling molecule and changes the networks of HER-2-regulated genes. Our results show that full oncogenic activation of HER-2 is the result of a transition in which activated HER-2 acquires dominant signaling properties that qualitatively alter the network of genes regulated by the activated oncogene compared with the proto-oncogene.

View Article and Find Full Text PDF

Studies on the relationships between inflammatory pathway genes and lung cancer risk have not included African-Americans and have only included a handful of genes. In a population-based case-control study on 198 African-American and 744 Caucasian women, we examined the association between 70 cytokine and cytokine receptor single-nucleotide polymorphisms (SNPs) and risk of non-small cell lung cancer (NSCLC). Unconditional logistic regression was used to estimate odds ratios and 95% confidence intervals in a dominant model adjusting for major risk factors for lung cancer.

View Article and Find Full Text PDF

Molecular pathway and network analysis tools that have been developed over the past decade provide an emerging systems-wide perspective for the analysis of gene expression, proteomic and metabolomic data. These tools link relevant extracted literature information available from structured knowledge bases with user-friendly features that enable analysis and interpretation of the global impact of a disease stage or drug treatment. Pathway and network analysis tools have been found to have broad applicability within the biomedical community, most specifically in cancer research to elucidate mechanisms of tumor progression and for biomarker discovery, and more recently in the area of drug discovery and development.

View Article and Find Full Text PDF

Cell-based assays are widely used in high-throughput screening to determine the effects of toxicants and drugs on their biological targets. To enable a functional genomics modeling of gene-environment interactions, quantitative assays are required both for gene expression and for the phenotypic responses to environmental challenge. To address this need, we describe an automated high-throughput methodology that provides phenotypic profiling of the cellular responses to environmental stress in Saccharomyces cerevisiae.

View Article and Find Full Text PDF