Publications by authors named "Craig E Stivala"

The relationship between drug-target residence time and the post-antibiotic effect (PAE) provides insights into target vulnerability. To probe the vulnerability of bacterial acetyl-CoA carboxylase (ACC), a series of heterobivalent inhibitors were synthesized based on pyridopyrimidine and moiramide B () which bind to the biotin carboxylase and carboxyltransferase ACC active sites, respectively. The heterobivalent compound , which has a linker of 50 Å, was a tight binding inhibitor of ACC ( 0.

View Article and Find Full Text PDF

Inappropriate activation of the NLRP3 inflammasome has been implicated in multiple inflammatory and autoimmune diseases. Herein, we aimed to develop novel NLRP3 inhibitors that could minimize the risk of drug-induced liver injury. Lipophilic ligand efficiency was used as a guiding metric to identify a series of 6,7-dihydro-5H-pyrazolo[5,1-][1,3]oxazinesulfonylureas.

View Article and Find Full Text PDF

The mechanism of π-allyliridium -benzoate-catalyzed allylic amination was studied by reaction progress kinetic analysis (RPKA), tandem ESI-MS analysis, and computational studies involving density functional theory (DFT) calculations. Reaction progress kinetic analysis (RPKA) reveals a zero-order dependence on allyl acetate, first-order dependence on catalyst and fractional-order dependence on amine. These data corroborate rapid ionization of the allylic acetate followed by turnover limiting C-N bond formation.

View Article and Find Full Text PDF

Cyclometalated π-allyliridium-,-benzoate complexes discovered in the Krische laboratory display unique amphiphilic properties, catalyzing both nucleophilic carbonyl allylation and electrophilic allylation of diverse amines as well as nitronates. Given the importance of chiral amines in FDA-approved small-molecule drugs, a collaboration with medicinal chemists at Genentech that included on-site graduate student internships was undertaken to explore and expand the scope of π-allyliridium-,-benzoate-catalyzed allylic amination and related processes. As described in this Account, our collective experimental studies have unlocked asymmetric allylic aminations of exceptionally broad utility and scope.

View Article and Find Full Text PDF

Hematopoietic progenitor kinase 1 (HPK1) is implicated as a negative regulator of T-cell receptor-induced T-cell activation. Studies using HPK1 kinase-dead knock-in animals have demonstrated the loss of HPK1 kinase activity resulted in an increase in T-cell function and tumor growth inhibition in glioma models. Herein, we describe the discovery of a series of small molecule inhibitors of HPK1.

View Article and Find Full Text PDF

Robust air-stable cyclometalated π-allyliridium ,-benzoates modified by ()-tol-BINAP catalyze the reaction of secondary aliphatic amines with racemic alkyl-substituted allylic acetates to furnish products of allylic amination with high levels of enantioselectivity. Complete branched regioselectivities were observed despite the formation of more highly substituted C-N bonds.

View Article and Find Full Text PDF

The first systematic study of simple nitronate nucleophiles in iridium-catalyzed allylic alkylation is described. Using a tol-BINAP-modified π-allyliridium ,-benzoate catalyst, α,α-disubstituted nitronates substitute racemic branched alkyl-substituted allylic acetates, thus providing entry to β-stereogenic α-quaternary primary amines. DFT calculations reveal early transition states that render the reaction less sensitive to steric effects and distinct trans-effects of diastereomeric chiral-at-iridium π-allyl complexes that facilitate formation of congested tertiary-quaternary C-C bonds.

View Article and Find Full Text PDF

The synthesis of the pentacylic core of (+)-citrinadin A is described. Our strategy harnesses the power of palladium-catalyzed trimethylenemethane chemistry (Pd-TMM) to form the key spirooxindole motif in a catalytic, asymmetric fashion. Upon the conversion of this spirooxindole to a vinyl epoxide electrophile, the piperidine ring is directly added via a diastereoselective metalation followed by an S2' addition.

View Article and Find Full Text PDF

Genetic screens in cultured human cells represent a powerful unbiased strategy to identify cellular pathways that determine drug efficacy, providing critical information for clinical development. We used insertional mutagenesis-based screens in haploid cells to identify genes required for the sensitivity to lasonolide A (LasA), a macrolide derived from a marine sponge that kills certain types of cancer cells at low nanomolar concentrations. Our screens converged on a single gene, LDAH, encoding a member of the metabolite serine hydrolase family that is localized on the surface of lipid droplets.

View Article and Find Full Text PDF

The nucleotide-binding-domain (NBD)-and leucine-rich repeat (LRR)-containing (NLR) family, pyrin-domain-containing 3 (NLRP3) inflammasome drives pathological inflammation in a suite of autoimmune, metabolic, malignant, and neurodegenerative diseases. Additionally, NLRP3 gain-of-function point mutations cause systemic periodic fever syndromes that are collectively known as cryopyrin-associated periodic syndrome (CAPS). There is significant interest in the discovery and development of diarylsulfonylurea Cytokine Release Inhibitory Drugs (CRIDs) such as MCC950/CRID3, a potent and selective inhibitor of the NLRP3 inflammasome pathway, for the treatment of CAPS and other diseases.

View Article and Find Full Text PDF

The pan-proteasome inhibitor bortezomib demonstrated clinical efficacy in off-label trials of Systemic Lupus Erythematosus. One potential mechanism of this clinical benefit is from the depletion of pathogenic immune cells (plasmablasts and plasmacytoid dendritic cells). However, bortezomib is cytotoxic against nonimmune cells, which limits its use for autoimmune diseases.

View Article and Find Full Text PDF

Cyclometallated π-allyliridium C,O-benzoates modified with (S)-tol-BINAP, which are stable to air, water, and SiO , catalyze highly enantioselective N-allylations of indoles and related azoles. This reaction complements previously reported metal-catalyzed indole allylations in that complete levels of N versus C3 and branched versus linear regioselectivity are observed.

View Article and Find Full Text PDF

The air- and water-stable π-allyliridium C,O-benzoate modified by ( S)-tol-BINAP, ( S)-Ir-II, catalyzes highly regio- and enantioselective Tsuji-Trost-type aminations of racemic branched alkyl-substituted allylic acetates using primary or secondary (hetero)aromatic amines. Specifically, in the presence of ( S)-Ir-II (5 mol%) in DME solvent at 60-70 °C, α-methyl allyl acetate 1a (100 mol%) reacts with primary (hetero)aromatic amines 2a-2l (200 mol%) or secondary (hetero)aromatic amines 3a-3l (200 mol%) to form the branched products of allylic amination 4a-4l and 5a-5l, respectively, as single regioisomers in good to excellent yield with uniformly high levels of enantioselectivity. As illustrated by the conversion of heteroaromatic amine 3m to adducts 6a-6g, excellent levels of regio- and enantioselectivity are retained across diverse branched allylic acetates bearing normal alkyl or secondary alkyl substituents.

View Article and Find Full Text PDF

The synthesis of des-epoxy-amphidinolide N was achieved in 22 longest linear and 33 total steps. Three generations of synthetic endeavors are reported herein. During the first generation, our key stitching strategy that highlighted an intramolecular Ru-catalyzed alkene-alkyne (Ru AA) coupling and a late-stage epoxidation proved successful, but the installation of the α,α'-dihydroxyl ketone motif employing a dihydroxylation method was problematic.

View Article and Find Full Text PDF

In the presence of a neutral dppf-modified iridium catalyst and CsCO, linear allylic acetates react with primary amines to form products of hydroamination with complete 1,3-regioselectivity. The collective data, including deuterium labeling studies, corroborate a catalytic mechanism involving rapid, reversible acetate-directed aminoiridation with inner-sphere/outer-sphere crossover followed by turnover-limiting proto-demetalation mediated by amine.

View Article and Find Full Text PDF

The first examples of amphiphilic reactivity in the context of enantioselective catalysis are described. Commercially available π-allyliridium C,O-benzoates, which are stable to air, water and SiO chromatography, and are well-known to catalyze allyl acetate-mediated carbonyl allylation, are now shown to catalyze highly chemo-, regio- and enantioselective substitutions of branched allylic acetates bearing linear alkyl groups with primary amines.

View Article and Find Full Text PDF

A solid-phase synthesis of α-aminoboronic acid peptides using a 1-glycerol polystyrene resin is described. Standard Fmoc solid-phase peptide chemistry is carried out to construct bortezomib and ixazomib. This approach eliminates the need for liquid-liquid extractions, silica gel column chromatography, and HPLC purifications, as products are isolated in high purity after direct cleavage from the resin.

View Article and Find Full Text PDF

The preparation of substituted azaindolines utilizing a domino palladium-catalyzed Heck cyclization/Suzuki coupling is described. The approach is amenable for the construction of all four azaindoline isomers. A range of functional groups such as esters, amides, ketones, sulfones, amines, and nitriles are all tolerated under the reaction conditions.

View Article and Find Full Text PDF

Lithium enolates derived from carboxylic acids are ubiquitous intermediates in organic synthesis. Asymmetric transformations with these intermediates, a central goal of organic synthesis, are typically carried out with covalently attached chiral auxiliaries. An alternative approach is to utilize chiral reagents that form discrete, well-defined aggregates with lithium enolates, providing a chiral environment conducive of asymmetric bond formation.

View Article and Find Full Text PDF

The lasonolides are novel polyketides that have displayed remarkable biological activity in vitro against a variety of cancer cell lines. Herein we describe our first-generation approach to the formal synthesis of lasonolide A. The key findings from these studies ultimately allowed us to go on and complete a total synthesis of lasonolide A.

View Article and Find Full Text PDF

From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health.

View Article and Find Full Text PDF

Lasonolide A is a novel polyketide displaying potent anticancer activity across a broad range of cancer cell lines. Here, an enantioselective convergent total synthesis of the (-)-lasonolide A in 16 longest linear and 34 total steps is described. This approach significantly reduces the step count compared to other known syntheses.

View Article and Find Full Text PDF

A combination of X-ray crystallography, (6)Li, (15)N, and (13)C NMR spectroscopies, and density functional theory computations affords insight into the structures and reactivities of intervening aggregates underlying highly selective asymmetric alkylations of carboxylic acid dianions (enediolates) mediated by the dilithium salt of a C2-symmetric chiral tetraamine. Crystallography shows a trilithiated n-butyllithium-dilithiated amide that has dimerized to a hexalithiated form. Spectroscopic studies implicate the non-dimerized trilithiated mixed aggregate.

View Article and Find Full Text PDF

Pinnatoxins belong to the cyclic imine (CI) group of marine toxins with a unique toxicological profile. The need for structural integrity of the aliphatic 7-membered cyclic imine for the potent bioactivity of pinnatoxins has been experimentally demonstrated. In this study, we probe interconversion of the natural cyclic imine and its open form, pinnatoxin A amino ketone (PnTX AK), under physiologically relevant aqueous conditions.

View Article and Find Full Text PDF