Objective: Remote identification of individuals with severe hyposmia may enable scalable recruitment of participants with underlying alpha-synuclein aggregation. We evaluated the performance of a staged screening paradigm using remote smell testing to enrich for abnormal dopamine transporter single-photon emission computed tomography imaging (DAT-SPECT) and alpha-synuclein aggregation.
Methods: The Parkinson's Progression Markers Initiative (PPMI) recruited participants for the prodromal cohort who were 60-years and older without a Parkinson's disease diagnosis.
Knowledge graphs have been shown to significantly improve search results. Usually populated by subject matter experts, relations therein need to keep up to date with medical literature in order for search to remain relevant. Dynamically identifying text snippets in literature that confirm or deny knowledge graph triples is increasingly becoming the differentiator between trusted and untrusted medical decision support systems.
View Article and Find Full Text PDFHaemosporidians are a diverse group of vector-borne parasitic protozoa that includes the agents of human malaria; however, most of the described species are found in birds and reptiles. Although our understanding of these parasites' diversity has expanded by analyses of their mitochondrial genes, there is limited information on these genes' evolutionary rates. Here, 114 mitochondrial genomes (mtDNA) were studied from species belonging to four genera: Leucocytozoon, Haemoproteus, Hepatocystis, and Plasmodium.
View Article and Find Full Text PDFThe reliability of a phylogenetic tree obtained from empirical data is usually measured by the bootstrap probability (Pb) of interior branches of the tree. If the bootstrap probability is high for most branches, the tree is considered to be reliable. If some interior branches show relatively low bootstrap probabilities, we are not sure that the inferred tree is really reliable.
View Article and Find Full Text PDFBackground: Behavior, while complex and dynamic, is among the most diverse, derived, and rapidly evolving traits in animals. The highly labile nature of heritable behavioral change is observed in such evolutionary phenomena as the emergence of converged behaviors in domesticated animals, the rapid evolution of preferences, and the routine development of ethological isolation between diverging populations and species. In fact, it is believed that nervous system development and its potential to evolve a seemingly infinite array of behavioral innovations played a major role in the successful diversification of metazoans, including our own human lineage.
View Article and Find Full Text PDFWith arguably the best finished and expertly annotated genome assembly, Drosophila melanogaster is a formidable genetics model to study all aspects of biology. Nearly a decade ago, the 12 Drosophila genomes project expanded D. melanogaster's breadth as a comparative model through the community-development of an unprecedented genus- and genome-wide comparative resource.
View Article and Find Full Text PDFBackground: Domesticated animals quickly evolve docile and submissive behaviors after isolation from their wild conspecifics. Model organisms reared for prolonged periods in the laboratory also exhibit similar shifts towards these domesticated behaviors. Yet whether this divergence is due to inadvertent selection in the lab or the fixation of deleterious mutations remains unknown.
View Article and Find Full Text PDF