Sphingomyelinases (SMase), enzymes that catalyze the hydrolysis of sphingomyelin to ceramide, are important sensors for inflammatory cytokines and apoptotic signaling. Studies have provided evidence that increased SMase activity can contribute to retinal injury. In most tissues, two major SMases are responsible for stress-induced increases in ceramide: acid sphingomyelinase (ASMase) and Mg-dependent neutral sphingomyelinase (NSMase).
View Article and Find Full Text PDFCeramides are bioactive compounds that play important roles in regulating cellular responses to extracellular stimuli and stress. Previous studies have shown that ceramides contribute to retinal degeneration associated with ischemic and ocular hypertensive stress. Acid sphingomyelinase (ASMase) is one of the major enzymes responsible for the stress-induced generation of ceramides.
View Article and Find Full Text PDFIn diabetic individuals, macular edema is a major cause of vision loss. This condition is refractory to insulin therapy and has been attributed to metabolic memory. The retinal pigment epithelium (RPE) is central to maintaining fluid balance in the retina, and this function is compromised by the activation of advanced glycation end-product receptors (RAGE).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
August 2016
Purpose: Acid sphingomyelinase (ASMase) catalyzes the hydrolysis of sphingomyelin to ceramide and mediates multiple responses involved in inflammatory and apoptotic signaling. However, the role ASMase plays in ischemic retinal injury has not been investigated. The purpose of this study was to investigate how reduced ASMase expression impacts retinal ischemic injury.
View Article and Find Full Text PDFPurpose: Diabetic macular edema (DME), an accumulation of fluid in the subretinal space, is a significant cause of vision loss. The impact of diabetes on the breakdown of the inner blood-retina barrier (BRB) is an established event that leads to DME. However, the role of the outer BRB in ocular diabetes has received limited attention.
View Article and Find Full Text PDFIncreased histone deacetylase (HDAC) activity and the resulting dysregulation of protein acetylation is an integral event in retinal degenerations associated with ischemia and ocular hypertension. This study investigates the role of preconditioning on the process of acetylation in ischemic retinal injury. Rat eyes were unilaterally subjected to retinal injury by 45 min of acute ischemia, and retinal neuroprotection induced by 5 min of an ischemic preconditioning (IPC) event.
View Article and Find Full Text PDFBackground: Mutations of acid sphingomyelinase (ASMase) cause Niemann-Pick diseases type A and B, which are fatal inherited lipid lysosomal storage diseases, characterized with visceral organ abnormalities and neurodegeneration. However, the effects of suppressing retinal ASMase expression are not understood. The goal of this study was to determine if the disruption of ASMase expression impacts the retinal structure and function in the mouse, and begin to investigate the mechanisms underlying these abnormalities.
View Article and Find Full Text PDFDiabetic macular edema (DME) is a major cause of visual impairment. Although DME is generally believed to be a microvascular disease, dysfunction of the retinal pigment epithelium (RPE) can also contribute to its development. Advanced glycation end-products (AGE) are thought to be one of the key factors involved in the pathogenesis of diabetes in the eye, and we have previously demonstrated a rapid breakdown of RPE function following glycated-albumin (Glyc-alb, a common AGE mimetic) administration in monolayer cultures of fetal human RPE cells.
View Article and Find Full Text PDFPurpose: The current studies investigate if the histone deacetylase (HDAC) inhibitor, valproic acid (VPA), can limit retinal ganglion cell (RGC) degeneration in an ocular-hypertensive rat model.
Methods: Intraocular pressure (IOP) was elevated unilaterally in Brown Norway rats by hypertonic saline injection. Rats received either vehicle or VPA (100 mg/kg) treatment for 28 days.
Neuroretinal ischemic injury contributes to several degenerative diseases in the eye and the resulting pathogenic processes involving a series of necrotic and apoptotic events. This study investigates the time and extent of changes in acetylation, and whether this influences function and survival of neuroretinal cells following injury. Studies evaluated the time course of changes in histone deacetylase (HDAC) activity, histone-H3 acetylation and caspase-3 activation levels as well as retinal morphology and function (electroretinography) following ischemia.
View Article and Find Full Text PDFPurpose: Retinal edema, the accumulation of extracellular fluid in the retina is usually attributed to inner blood retina barrier (BRB) leakage. Vascular endothelial growth factor plays an important role in this process. The effects of VEGF on the outer BRB, the RPE, however, have received limited attention.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2013
Purpose: Pigment epithelium-derived factor (PEDF) regulates blood-retinal barrier function. As a constituent of aqueous humor, the role of PEDF in conventional outflow function is unknown. The goals of the study were to examine the effects of PEDF on barrier function of cultured Schlemm's canal (SC) endothelia and outflow facility in mouse eyes in situ.
View Article and Find Full Text PDFPurpose: Protein acetylation is an essential mechanism in regulating transcriptional and inflammatory events. Studies have shown that nonselective histone deacetylase (HDAC) inhibitors can protect the retina from ischemic injury in rats. However, the role of specific HDAC isoforms in retinal degenerative processes remains obscure.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2013
Increasing evidence points to a role for the protein quality control in the endoplasmic reticulum (ER) in maintaining intestinal homeostasis. However, the specific role for general ER chaperones in this process remains unknown. Herein, we report that a major ER heat shock protein grp94 interacts with MesD, a critical chaperone for the Wnt coreceptor low-density lipoprotein receptor-related protein 6 (LRP6).
View Article and Find Full Text PDFIn diabetic retinopathy, vision loss is usually secondary to macular edema, which is thought to depend on the functional integrity of the blood-retina barrier. The levels of advanced glycation end products in the vitreous correlate with the progression of diabetic retinopathy. Natriuretic peptides (NP) are expressed in the eye and their receptors are present in the retinal pigment epithelium (RPE).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
June 2012
Purpose: The current study examined if opioid-receptor-activation by morphine can improve retinal function and retinal ganglion cell (RGC) integrity in a chronic glaucoma rat model.
Methods: IOP was raised in Brown Norway rats by injecting hypertonic saline into the limbal venous system. Rats were treated daily with 1 mg/kg morphine for 28 days at 24-hour intervals; animals were examined for changes in IOP by a TonoLab tonometer.
Invest Ophthalmol Vis Sci
November 2011
Purpose: The two most commonly used in vitro models of the retinal pigment epithelium (RPE) are fetal human RPE (fhRPE) and ARPE-19 cells; however, studies of their barrier properties have produced contradictory results. To compare their utility as RPE models, their morphologic and functional characteristics were analyzed.
Methods: Monolayers of both cell types were grown on permeable membrane filters.
Bradykinin stimulation of B(2) kinin receptors has been shown to promote matrix metallo-proteinase (MMP) secretion from trabecular meshwork cells and to increase conventional outflow facility. Because acute secretion of MMPs can be dependent on the activity of extracellular signal-regulated MAP kinases (ERK1/2), experiments were performed to determine bradykinin effects on ERK1/2 in cultured human trabecular meshwork cells and the relationship of these effects to MMP-9 release. Treatment of cells with bradykinin produced a rapid 4-to 6-fold increase in ERK1/2 phosphorylation.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
April 2011
Purpose: The detrimental role of TNF-α in ischemia-induced tissue damage is known. The authors study examined whether opioid receptor activation alters TNF-α levels in the postischemic retina.
Methods: Retinal ischemia was induced by raising the intraocular pressure above systolic blood pressure (155-160 mm Hg) for 45 minutes.
Purpose: To evaluate the influence of race and age on aqueous humor levels of transforming growth factor-beta 2 (TGF-β2).
Methods: Patients >40 years of age and undergoing cataract or glaucoma surgery without associated significant intraocular pathology were selected for this study. In bilateral cases, only the first operated eye was included for evaluation.
Invest Ophthalmol Vis Sci
July 2010
PURPOSE. The pathogenesis of retinal ischemia results from a series of events involving changes in gene expression and inflammatory cytokines. Protein acetylation is an essential mechanism in regulating transcriptional and inflammatory events.
View Article and Find Full Text PDFThe discovery of a pyrrolopyrimidine class of LIM-kinase 2 (LIMK2) inhibitors is reported. These LIMK2 inhibitors show good potency in enzymatic and cellular assays and good selectivity against ROCK. After topical dosing to the eye in a steroid induced mouse model of ocular hypertension, the compounds reduce intraocular pressure to baseline levels.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
August 2009
Purpose: In nonocular systems, activation of opioid receptors has been shown to ameliorate tissue damage induced by ischemic stress. The current study was an investigation of whether opioid receptors activated by endogenous or exogenous agonists can ameliorate ischemic retinal injury.
Methods: In an investigation of whether endogenous opioid receptor-activation reduces ischemic injury, the effects of the opioid antagonist naloxone (3 mg/kg; IP) on retinal neuroprotection induced by ischemic preconditioning (IPC) were evaluated.
Tissue kallikrein acts on the substrate, low molecular weight kininogen, to liberate bradykinin in a variety of tissues. Bradykinin stimulation of B(2) kinin receptors has been shown to initiate signaling in trabecular meshwork cells and increase conventional outflow facility. The objective of the present study was to determine if the components for kinin generation and response are expressed in tissues of the human anterior segment.
View Article and Find Full Text PDFJ Ocul Pharmacol Ther
August 2008
Introduction: The topical application of prostaglandin F(2 ) (FP)-receptor agonists has been shown to significantly lower intraocular pressure (IOP) in humans and is now considered the first-line treatment for ocular hypertension. Despite the prominent role FP-receptor agonists play in the treatment of glaucoma, our understanding of how these agents lower IOP remains incomplete. The present study was designed to evaluate the role of matrix metalloproteinase (MMP) activation and the cytokine, tumor necrosis factor alpha (TNF-alpha), in latanoprost-induced changes in IOP.
View Article and Find Full Text PDF