Publications by authors named "Craig D Workman"

: Understanding how dual-tasking and Parkinson's disease medication affect gait and balance regularity can provide valuable insights to patients, caregivers, and clinicians regarding frailty and fall risk. However, dual-task gait and balance studies in PD most often only employ linear measures to describe movement regularity. Some have used nonlinear techniques to analyze PD performances, but only in the on-medication state.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a prevalent neurodegenerative disorder where progressive neuron loss is driven by impaired brain bioenergetics, particularly mitochondrial dysfunction and disrupted cellular respiration. Terazosin (TZ), an α-1 adrenergic receptor antagonist with a known efficacy in treating benign prostatic hypertrophy and hypertension, has shown potential in addressing energy metabolism deficits associated with PD due to its action on phosphoglycerate kinase 1 (PGK1). This study aimed to investigate the safety, tolerability, bioenergetic target engagement, and optimal dose of TZ in neurologically healthy subjects.

View Article and Find Full Text PDF

Δ9-Tetrahydrocannabinol is the main psychoactive component of cannabis and cannabidiol is purportedly responsible for many of the medicinal benefits. The effects of Δ9-tetrahydrocannabinol and cannabidiol in younger populations have been well studied; however, motor function, cognitive function, and cerebral glucose metabolism in older adults have not been extensively researched. The purpose of this study was to assess differences in cognitive function, motor function, and cerebral glucose metabolism (assessed via [F]-fluorodeoxyglucose positron emission tomography) in older adults chronically using Δ9-tetrahydrocannabinol, cannabidiol, and non-using controls.

View Article and Find Full Text PDF

Mortality of acute coronavirus disease (COVID-19) is higher in men than in women. On the contrary, women experience more long-term consequences of the disease, such as fatigue. In this perspective article, we proposed a model of the potential factors that might contribute to the higher incidence of post-COVID-19 fatigue in women.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) research has shown great outcome variability in motor performance tasks, with one possible source being sex differences. The goal of this study was to evaluate the effects of estrogen levels on leg muscle fatigability during a fatigue task (FT) after 4 mA tDCS over the left motor cortex (M1). Ten young, healthy eumenorrheic women received 4 mA anodal active or sham stimulation over the left M1 during periods of high and low estrogen levels.

View Article and Find Full Text PDF

Background: Maintaining an upright stance involves a complex interaction of sensory processing and motor outputs to adequately perform this fundamental motor skill. Aging and cannabis use independently disrupt balance performance, but our recent data did not find differences in static balance performance between older cannabis Users and older Non-Users using traditional linear measures (i.e.

View Article and Find Full Text PDF

Common symptoms of multiple sclerosis (MS) include motor impairments of the lower extremities, particularly gait disturbances. Loss of balance and muscle weakness, representing some peripheral effects, have been shown to influence these symptoms, however, the individual role of cortical and subcortical structures in the central nervous system is still to be understood. Assessing [F]fluorodeoxyglucose (FDG) uptake in the CNS can assess brain activity and is directly associated with regional neuronal activity.

View Article and Find Full Text PDF

Aging is associated with cognitive decline and increased fall risk. Cognitive impairment is associated with cannabis use, which is increasing among older adults. Perceptual and physiological fall risk are discordant in some older adults, but whether cannabis use influences this association is unknown.

View Article and Find Full Text PDF

Scientific evidence concerning the subacute and long-term effects of coronavirus disease 2019 (COVID-19) is on the rise. It has been established that infection by serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a systemic process that involves multiple organs. The complications and long-term consequences of COVID-19 are diverse and patients need a multidisciplinary treatment approach in the acute and post-acute stages of the disease.

View Article and Find Full Text PDF

Asymmetrical lower limb weakness is an early symptom and significant contributor to the progressive worsening of walking ability in people with multiple sclerosis (PwMS). Transcranial direct current stimulation (tDCS) may effectively increase neural drive to the more-affected lower limb and, therefore, increase symmetrical activation. Four PwMS (1 female, age range: 27-57) underwent one session each of 3 mA or SHAM tDCS over the motor cortex corresponding to their more-affected limb followed by 20 min of treadmill walking at a self-selected speed.

View Article and Find Full Text PDF

Although Charcot characterized classic cerebellar symptoms in people with multiple sclerosis (PwMS) in 1877, the impact of cerebellar dysfunction on MS symptoms has predominately been evaluated in the last two decades. Recent studies have clearly demonstrated the association between cerebellar pathology, including atrophy and reduced fractional anisotropy in the peduncles, and motor impairments, such as reduced gait velocity and time to complete walking tasks. However, future studies using novel imaging techniques are needed to elucidate all potential pathophysiology that is associated with disability in PwMS.

View Article and Find Full Text PDF

Mild traumatic brain injury (mTBI) has been defined as a transient (<24 h) condition of confusion and/or loss of consciousness for less than 30 min after brain injury and can result in short- and long-term motor and cognitive impairments. Recent studies have documented the therapeutic potential of non-invasive neuromodulation techniques for the enhancement of cognitive and motor function in mTBI. Alongside repetitive transcranial magnetic stimulation (rTMS), the main technique used for this purpose is transcranial direct current stimulation (tDCS).

View Article and Find Full Text PDF

Cannabis is one of the most common drugs in the United States and is the third most prevalent substance consumed by adults aged 50 years and older. Normal aging is associated with physiological changes that make older adults vulnerable to impaired function and geriatric conditions (e.g.

View Article and Find Full Text PDF

Interest in transcranial direct current stimulation (tDCS) to alter cortical excitability, facilitate neural plasticity, and improve performance is increasing. Subjects often report temporary stimulation-related sensations, which might distract from the task being performed or compromise blinding. tDCS is also prone to high outcome irregularity and one potential variability source is the biological sex of the subject.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) has been shown to alter cortical excitability. However, it is increasingly accepted that tDCS has high inter- and intra-subject response variability, which currently limits broad application and has prompted some to doubt if the current can reach the brain. This study reports individual cerebral blood flow responses in people with multiple sclerosis and neurologically healthy subjects that experienced 5 min of anodal tDCS at 1 mA, 2 mA, 3 mA, and 4 mA over either the dorsolateral prefrontal cortex (DLPFC) or the primary motor cortex (M1).

View Article and Find Full Text PDF

Asymmetrical lower limb strength is a significant contributor to impaired walking abilities in people with multiple sclerosis (PwMS). Transcranial direct current stimulation (tDCS) may be an effective technique to enhance cortical excitability and increase neural drive to more-affected lower limbs. A sham-controlled, randomized, cross-over design was employed.

View Article and Find Full Text PDF

Studies investigating the effects of transcranial direct current stimulation (tDCS) on fatigue and muscle activity have elicited measurable improvements using stimulation intensities ≤2 mA and submaximal effort tasks. The purpose of this study was to determine the effects of 2 mA and 4 mA anodal tDCS over the primary motor cortex (M1) on performance fatigability and electromyographic (EMG) activity of the leg muscles during a maximal isokinetic task in healthy young adults. A double-blind, randomized, sham-controlled crossover study design was applied.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) is accompanied by transient sensations (e.g., tingling, itching, burning), which may affect treatment outcomes or break the blinding of the study protocol.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) is a form of non-invasive neuromodulation that is increasingly being utilized to examine and modify several cognitive and motor functions. Although tDCS holds great potential, it is difficult to determine optimal treatment procedures to accommodate configurations, the complex shapes, and dramatic conductivity differences among various tissues. Furthermore, recent demonstrations showed that up to 75% of the tDCS current applied to rodents and human cadavers was shunted by the scalp, subcutaneous tissue, and muscle, bringing the effects of tDCS on the cortex into question.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) has previously shown different cortical excitability and neuropsychological effects between women and men. However, the sex-specific effects of tDCS on leg muscle fatigability has not been investigated. The purpose of this study was to determine the effects of a single session of 2 mA and 4 mA primary motor cortex tDCS on leg muscle fatigability in healthy young men and women in a crossover design.

View Article and Find Full Text PDF

Background: An early symptom of multiple sclerosis is unilateral weakness, particularly in the lower limbs, which is associated with strength asymmetries. The purpose of this exploratory study was to examine strength asymmetries at the hip, knee, and ankle joints, and to investigate the associations between lower limb strength asymmetries and self-reported fatigue severity and disability in people with multiple sclerosis.

Methods: Sixteen mildly-disabled people with multiple sclerosis (females = 9) completed isokinetic maximal voluntary contractions of the hip extensors and flexors, knee extensors and flexors, and ankle plantar flexors and dorsiflexors.

View Article and Find Full Text PDF

People with Parkinson's disease (PwPD) often experience gait and balance problems that substantially impact their quality of life. Pharmacological, surgical, and rehabilitative treatments have limited effectiveness and many PwPD continue to experience gait and balance impairment. Transcranial direct current stimulation (tDCS) may represent a viable therapeutic adjunct.

View Article and Find Full Text PDF

Animal and transcranial magnetic stimulation motors have evoked potential studies suggesting that the currently used transcranial direct current stimulation (tDCS) intensities produce measurable physiological changes. However, the validity, mechanisms, and general efficacy of this stimulation modality are currently being scrutinized. The purpose of this pilot study was to investigate the effects of dorsolateral prefrontal cortex tDCS on cerebral blood flow.

View Article and Find Full Text PDF