Launched in May 2012 as part of the New Therapeutic Uses program, the National Center for Advancing Translational Sciences (NCATS)' National Institutes of Health (NIH)-Industry Partnerships initiative fostered collaboration between pharmaceutical companies and the biomedical research community to advance therapeutic development. Over the 10-year life of the initiative, the industry partners included: AstraZeneca; AbbVie (formerly Abbott); Bristol-Myers Squibb; Eli Lilly and Company; GlaxoSmithKline; Janssen Pharmaceutical Research & Development, L.L.
View Article and Find Full Text PDFThere are many reasons that molecules fail to progress to market and various principles of risk-benefit decisions that can help drive the molecule through development. This symposium included discussions on global strategies involved in pushing promising molecules to market, what to do when a molecule stalls in its progress to market, and options for rescuing the molecule and pushing it forward again. Innovative partnerships that bring stalled drugs back into clinical development were also addressed.
View Article and Find Full Text PDFA new model for translational research and drug repositioning has recently been established based on three-way partnerships between public funders, the pharmaceutical industry and academic investigators. Through two pioneering initiatives - one involving the Medical Research Council in the United Kingdom and one involving the National Center for Advancing Translational Sciences of the National Institutes of Health in the United States - new investigations of highly characterized investigational compounds have been funded and are leading to the exploration of known mechanisms in new disease areas. This model has been extended beyond these first two initiatives.
View Article and Find Full Text PDFIn an effort to uncover systematic learnings that can be applied to improve compound survival, an analysis was performed on data from Phase II decisions for 44 programs at Pfizer. It was found that not only were the majority of failures caused by lack of efficacy but also that, in a large number of cases (43%), it was not possible to conclude whether the mechanism had been tested adequately. A key finding was that an integrated understanding of the fundamental pharmacokinetic/pharmacodynamic principles of exposure at the site of action, target binding and expression of functional pharmacological activity (termed together as the 'three Pillars of survival') all determine the likelihood of candidate survival in Phase II trials and improve the chance of progression to Phase III.
View Article and Find Full Text PDFHematopoietic prostaglandin D synthase (HPGDS) is primarly expressed in mast cells, antigen-presenting cells, and Th-2 cells. HPGDS converts PGH2 into PGD2, a mediator thought to play a pivotal role in airway allergy and inflammatory processes. In this letter, we report the discovery of an orally potent and selective inhibitor of HPGDS that reduces the antigen-induced response in allergic sheep.
View Article and Find Full Text PDFThe design and synthesis of a series of 11,12-cyclic carbamate derivatives of 6-O-methylerythromycin A that are novel, nonpeptide LHRH antagonists, is described. The macrolide antagonist 1, discovered during a screen of our chemical repository, was compared to a macrocyclic peptide antagonist 2 using molecular modeling, thus providing a model for the design of more potent antagonists. Medicinal chemistry efforts to find a replacement for cladinose at position 3 of the erythronolide core provided a series of oxazolidinone carbamates that were equally as active as the cladinose-containing parent macrolides.
View Article and Find Full Text PDFIntroduction: Many therapeutic agents stimulate histamine release from mast cells, which results in a decrease in blood pressure. The purpose of this study is to establish a method to determine if the mechanism of action, or one of the mechanisms, of hypotensive compounds is related to the release of histamine. The method was developed using a novel hypotensive compound, SC-372.
View Article and Find Full Text PDFReactive oxygen species (ROS) have been implicated as important mediators of cellular damage during ischemia/reperfusion. AEOL10113 is a low-molecular-weight superoxide dismutase mimetic that has dismutase activity against ROS. The objective of this study was to test the cardioprotective efficacy of postischemic administration of AEOL10113 in a rat model of left ventricular ischemia and reperfusion.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2002
The role of endothelin-B (ET(B)) receptors in circulatory homeostasis is ambiguous, reflecting vasodilator and constrictor effects ascribed to the receptor and diuretic and natriuretic responses that could oppose the hypertensive effects of ET excess. With the use of conscious, telemetry-instrumented cynomolgus monkeys, we characterized the hypertension produced by ET(B) blockade and the role of ET(A) receptors in mediating this response. Mean arterial pressure (MAP) and heart rate (HR) were measured 24 h/day for 24 days under control conditions and during administration of the ET(B)-selective antagonist A-192621 (0.
View Article and Find Full Text PDFPurpose: To evaluate the feasibility of using dynamic contrast-enhanced magnetic resonance imaging (MRI) for assessment of muscle perfusion in a rat model of hind-limb ischemia.
Materials And Methods: The acute alteration and chronic recovery in muscle perfusion and perfusion reserve after femoral artery ligation were quantified using the maximum Gd-DTPA uptake rate obtained by a T(1)-weighted gradient-recalled echo sequence. Radionuclide-labeled microsphere blood flow measurements were performed for comparison with the MR perfusion measurement on a separate set of animals.
Bimoclomol has been shown to increase an inducible member of the heat shock protein 70 family (HSP70) and cytoprotect in vitro. Here, we addressed whether oral pretreatment of rats with bimoclomol could elevate myocardial HSP70 and reduce infarct size in a rat model of ischemia and reperfusion. Rats were pretreated with bimoclomol at 3, 6 or 18 h or with 42 degrees thermal stress 24 h before ischemia.
View Article and Find Full Text PDFBimoclomol is a new compound that improves cell survival under experimental stress conditions partly by increasing intracellular heat shock proteins (HSPs). HSPs, especially HSP70, play a cytoprotective role in the rat heart. Rat neonatal cardiomyocytes were used to determine the ability of bimoclomol to induce HSP70 and affect cell survival across a broad concentration range (0.
View Article and Find Full Text PDF