The southern cattle fever tick (SCFT) Rhipicephalus (Boophilus) microplus, is considered the most important ectoparasite of livestock in the world because of high financial losses associated with direct feeding and transmission of the hemoparasites Babesia bovis, B. bigemina, and Anaplasma marginale. Unfortunately, SCFT in many parts of the world have evolved resistance to all market-available pesticides thus driving development of new control technologies.
View Article and Find Full Text PDFBackground: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies.
View Article and Find Full Text PDFAmong social insects, colony-level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of the foraging gene have been associated with differences in foraging and activity of a wide variety of organisms.
View Article and Find Full Text PDFAedes aegypti, the principal vector of yellow fever and dengue fever, is responsible for more than 30,000 deaths annually. Compounds such as carbon dioxide, amino acids, fatty acids and other volatile organic compounds (VOCs) have been widely studied for their role in attracting Ae. aegypti to hosts.
View Article and Find Full Text PDFPesticides currently in widespread use often lack species specificity and also become less effective as resistance emerges. Consequently, there is a pressing need to develop novel agents that are narrowly targeted and safe to humans. A cell-based screening platform was designed to discover compounds that are lethal to mosquito (Anopheles and Aedes) cells but show little or no activity against other insect (Drosophila) or human cell lines.
View Article and Find Full Text PDFIntegrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification.
View Article and Find Full Text PDFEfficient integration of functional genes is an essential prerequisite for successful gene delivery such as cell transfection, animal transgenesis, and gene therapy. Gene delivery strategies based on viral vectors are currently the most efficient. However, limited cargo capacity, host immune response, and the risk of insertional mutagenesis are limiting factors and of concern.
View Article and Find Full Text PDFIn our previous study we isolated 10 bacterial species from fourth-instar larval midguts of the red imported fire ant, Solenopsis invicta. Here we report the genetic transformation and reintroduction of three species (Kluyvera cryocrescens, Serratia marcescens, and isolate 38) into the fire ant host. All three species were transformed with the plasmid vector, pZeoDsRed.
View Article and Find Full Text PDFInsertional mutagenesis can be achieved by a variety of approaches, including both random and targeted methods. In contrast to chemical mutagenesis, insertional mutagens provide a molecular tag, thereby allowing rapid identification of the mutated genomic region. Integration into defined genomic locations has great utility for both gene insertion and mutagenesis.
View Article and Find Full Text PDFThis paper presents novel methods for producing transgenic animals, with a further emphasis on how these techniques may someday be applied in gene therapy. There are several passive methods for transgenesis, such as pronuclear microinjection (PNI) and Intracytoplasmic Sperm Injection-Mediated Transgenesis (ICSI-Tr), which rely on the repair mechanisms of the host for transgene (tg) insertion. ICSI-Tr has been shown to be an effective means of creating transgenic animals with a transfection efficiency of approximately 45% of animals born.
View Article and Find Full Text PDFTransposons are mobile genetic elements that can be used to integrate transgenes into host cell genomes. The piggyBac transposon system has been used for transgenesis of insects and for germline mutagenesis in mice. We compared transposition activity of piggyBac with Sleeping Beauty (SB), a widely used transposon system for preclinical gene therapy studies.
View Article and Find Full Text PDFA nonviral vector for highly efficient site-specific integration would be desirable for many applications in transgenesis, including gene therapy. In this study we directly compared the genomic integration efficiencies of piggyBac, hyperactive Sleeping Beauty (SB11), Tol2, and Mos1 in four mammalian cell lines. piggyBac demonstrated significantly higher transposition activity in all cell lines whereas Mos1 had no activity.
View Article and Find Full Text PDFInsect Biochem Mol Biol
October 2005
The development of genetic strategies to control the spread of mosquito-borne diseases through the use of class II transposons has been hampered by suboptimal rates of transformation and the absence of post-integration mobility for all transposons evaluated to date. Two Mos1 mariner transposase mutants were produced by the site-directed mutagenesis of amino acids, E137 and E264, to K and R, respectively. The effects of these mutations on the transpositional activities of Mos1-derived transposon constructs were evaluated by interplasmid transposition assays in Escherichia coli and Aedes aegypti.
View Article and Find Full Text PDFBacteria were isolated and cultured from the red imported fire ant (Solenopsis invicta) midgut. The small-subunit ribosomal RNA gene, (16s rRNA gene, approximately 1500 bp) was amplified from bacterial genomic DNA using the polymerase chain reaction and consensus sequence primers. Restriction fragment length polymorphism analysis revealed 10 unique profiles, indicating that at least 10 different bacteria are present in red imported fire ant midguts.
View Article and Find Full Text PDFThe modification of mammalian genomes is an important goal in gene therapy and animal transgenesis. To generate stable genetic and biochemical changes, the therapeutic genes or transgenes need to be incorporated into the host genome. Ideally, the integration of the foreign gene should occur at sites that ensure their continual expression in the absence of any unwanted side effects on cellular metabolism.
View Article and Find Full Text PDFBackground: One of the many ascribed functions of CCCTC-binding factor (CTCF) in vertebrates is insulation of genes via enhancer-blocking. Insulation allows genes to be shielded from "cross-talk" with neighboring regulatory elements. As such, endogenous insulator sequences would be valuable elements to enable stable transgene expression.
View Article and Find Full Text PDFA variety of technological advances in recent years have made permanent genetic manipulation of an organism a technical possibility. As the details of natural biological processes for genome modification are elucidated, the enzymes catalyzing these events (transposases, recombinases, integrases and DNA repair enzymes) are being harnessed or modified for the purpose of intentional gene modification. Targeted integration and gene repair can be mediated by the DNA-targeting specificity inherent to a particular enzyme, or rely on user-designed specificities.
View Article and Find Full Text PDFThe Class II transposable element, piggyBac, was used to transform the yellow fever mosquito, Aedes aegypti. In two transformed lines only 15-30% of progeny inherited the transgene, with these individuals displaying mosaic expression of the EGFP marker gene. Southern analyses, gene amplification of genomic DNA, and plasmid rescue experiments provided evidence that these lines contained a high copy number of piggyBac transformation constructs and that much of this DNA consisted of both donor and helper plasmids.
View Article and Find Full Text PDFA rapid, simple, and reproducible assay is described that can be used to detect differences in the ability of oligonucleotides to influence the aggregation of colloidal gold nanoparticles. The aggregation reaction of the gold colloid was monitored through UV-visible absorption spectroscopy. Single isolated colloidal gold particles have a surface plasmon resonance manifested as a single absorbance peak at approximately 520 nm, and aggregated gold complexes develop new red-shifted peaks/shoulders depending on the nature and extent of the aggregated complex.
View Article and Find Full Text PDFPotato production in tropical and subtropical countries suffers from damage caused by the potato tuber moth (PTM), Phthorimaea operculella. The aim of this research was the development of the components required for a germline transformation system for the PTM. We tested three components that are critical to genetic transformation systems for insects: promoter activity, marker gene expression, and transposable element function.
View Article and Find Full Text PDFThe transition of fire ant queens from alates to dealates, following a mating flight, is associated with numerous important physiological changes. A molecular analysis of gene expression differences that occur between alates and dealates was performed using the suppression subtractive hybridization (SSH) method. 983 SSH clones were arrayed and screened by dot blot hybridization, followed by Northern blot analysis for selected clones.
View Article and Find Full Text PDFBackground: Aedes aegypti is the key vector of both the Yellow Fever and Dengue Fever viruses throughout many parts of the world. Low and variable transgene expression levels due to position effect and position effect variegation are problematic to efforts to create transgenic laboratory strains refractory to these viruses. Transformation efficiencies are also less than optimal, likely due to failure to detect expression from all integrated transgenes and potentially due to limited expression of the transposase required for transgene integration.
View Article and Find Full Text PDFThe completion of the genome assembly for the African malaria mosquito, Anopheles gambiae, and continuing genomic efforts for the yellow fever mosquito, Aedes aegypti, have allowed the use of bioinformatics tools to identify and characterize a diverse array of transposable elements (TEs) in these and other mosquito genomes. An overview of the types and number of both RNA-mediated and DNA-mediated TEs that are found in mosquito genomes is presented. A number of novel and interesting TEs from these species are discussed in more detail.
View Article and Find Full Text PDFThe excision of specific DNA sequences from integrated transgenes in insects permits the dissection in situ of structural elements that may be important in controlling gene expression. Furthermore, manipulation of potential control elements in the context of a single integration site mitigates against insertion site influences of the surrounding genome. The cre-loxP site-specific recombination system has been used successfully to remove a marker gene from transgenic yellow fever mosquitoes, Aedes aegypti.
View Article and Find Full Text PDF