Publications by authors named "Craig B Neylon"

Telomerase activity is elevated in more than 85% of cancer cells and absent in most of the normal cells and thus represents a potential cancer biomarker. We report its measurement in colon and bladder cancer cells captured using antibody-coated magnetic beads. The cells are lysed and telomerase activity is detected using a biosensor assay that employs an oligonucleotide containing the telomerase recognition sequence also covalently coupled to magnetic beads.

View Article and Find Full Text PDF

Airway smooth muscle cell hyperplasia contributes to airway remodeling and hyperreactivity characteristic of asthma. Changes to potassium channel activity in proliferating human airway smooth muscle (HASM) cells have been described, but no regulatory role in proliferation has been attributed to them. We sought to investigate the expression of the intermediate conductance calcium-activated potassium channel K(Ca)3.

View Article and Find Full Text PDF

Activation of endothelial cell small- (S) and intermediate- (I) conductance calcium-activated potassium channels (K(Ca)) and current or molecular transfer via myoendothelial gap junctions underlies endothelium-derived hyperpolarization leading to vasodilation. The mechanism underlying the K(Ca) component of vasodilator activity and the characteristics of gap junctions are targets for the selective control of vascular function. In the rat mesenteric artery, where myoendothelial gap junctions and connexin (Cx) 40 are critical for the transmission of the endothelial cell hyperpolarization to the smooth muscle, SK(Ca) and IK(Ca) provide different facets of the endothelium-derived hyperpolarization response, being critical for the hyperpolarization and repolarization phases, respectively.

View Article and Find Full Text PDF

Control of cerebral vasculature differs from that of systemic vessels outside the blood-brain barrier. The hypothesis that the endothelium modulates vasomotion via direct myoendothelial coupling was investigated in a small vessel of the cerebral circulation. In the primary branch of the rat basilar artery, membrane potential, diameter, and calcium dynamics associated with vasomotion were examined using selective inhibitors of endothelial function in intact and endothelium-denuded arteries.

View Article and Find Full Text PDF

The slow after-hyperpolarization (sAHP) following the action potential is an important determinant of the firing patterns of enteric neurons. The channel responsible for the sAHP thus serves as a critical control point at which neurotransmitters and inflammatory mediators modulate gut motility. Many of these receptor-evoked pathways are known to inhibit the sAHP and, thus, excite enteric neurons.

View Article and Find Full Text PDF

Background And Purpose: Endothelium-derived hyperpolarizing factor responses in the rat middle cerebral artery are blocked by inhibiting IKCa channels alone, contrasting with peripheral vessels where block of both IKCa and SKCa is required. As the contribution of IKCa and SKCa to endothelium-dependent hyperpolarization differs in peripheral arteries, depending on the level of arterial constriction, we investigated the possibility that SKCa might contribute to equivalent hyperpolarization in cerebral arteries under certain conditions.

Methods: Rat middle cerebral arteries (approximately 175 microm) were mounted in a wire myograph.

View Article and Find Full Text PDF

Induction of K(Ca)3.1 (IKCa) potassium channel plays an important role in vascular smooth muscle cell proliferation. Here, we report that the gene encoding K(Ca)3.

View Article and Find Full Text PDF

Calcium-activated potassium channels are critically important in modulating neuronal cell excitability. One member of the family, the intermediate-conductance potassium (IK) channel, is not thought to play a role in neurones because of its predominant expression in non-excitable cells such as erythrocytes and lymphocytes, in smooth muscle tissues, and its lack of apparent expression in brain. In the present study, we demonstrate that IK channels are localized on specific neurones in the mouse enteric nervous system where they mediate the slow afterhyperpolarization following an action potential.

View Article and Find Full Text PDF

Intermediate-conductance (IK) Ca(2+)-activated K(+) channels are expressed in many different cell types where they perform a variety of functions including cell volume regulation, transepithelial secretion, lymphocyte activation and cell cycle progression. IK channels are thought to be regulated by phosphorylation; however, whether kinases act directly on the channel is unclear. Using IK channels heterologously expressed in Xenopus oocytes, we demonstrate that IK channels are potently inhibited (60%) by the catalytic subunit of protein kinase A (PKA).

View Article and Find Full Text PDF

IK channels, which had been previously found in hemopoetically derived cells (including erythrocytes and lymphocytes) and epithelial cells, where they regulate proliferation, cell volume regulation and secretion, have only recently been discovered in neurons, where they had previously been claimed not to occur. Based on immunohistochemical detection of IK channel-like immunoreactivity, it has been reported that IK channel expression in enteric neurons is suppressed in Crohn's disease. In the present work we have investigated whether authentic IK channels are expressed by enteric neurons.

View Article and Find Full Text PDF

Recent functional evidence suggests that intermediate conductance calcium-activated potassium channels (IK channels) occur in neurons in the small intestine and in mucosal epithelial cells in the colon. This study was undertaken to investigate whether IK channel immunoreactivity occurs at these and at other sites in the gastrointestinal tract of the rat. IK channel immunoreactivity was found in nerve cell bodies throughout the gastrointestinal tract, from the esophagus to the rectum.

View Article and Find Full Text PDF

Oligophrenin-1 is a RhoGTPase-activating protein (RhoGAP) that is involved in the regulation of shape changes in dendritic spines, and outgrowth of axons and dendrites in the brain. These changes in neuronal morphology are central to the mechanisms of plasticity, learning, and memory. Although the enteric nervous system also exhibits long-term changes in neuronal function, the expression and involvement of oligophrenin-1 has not previously been investigated.

View Article and Find Full Text PDF

Potassium channels are currently the focus of much attention because of their recently discovered role in the regulation of vascular smooth muscle growth. Dramatic alterations in the expression and activity of K+ channels causing marked changes in the cell's electrical properties accompany enhanced growth of smooth muscle cells (SMCs). These findings indicate that alterations in K+ channel function are important for SMC proliferation.

View Article and Find Full Text PDF

1. Myenteric afterhyperpolarization-generating myenteric (AH) neurons serve as intrinsic primary afferent neurons of the enteric nervous system and generate prolonged or slow afterhyperpolarizing potentials (slow AHP). The slow AHP is generated by an increase in a Ca2+-activated K+ conductance (gK-Ca) and is inhibited by enteric neurotransmitters leading to increased excitability.

View Article and Find Full Text PDF