Graphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxide nanosheets at a concentration of 200 μg m or filtered air were inhaled for 2 h by 14 young healthy volunteers in repeated visits.
View Article and Find Full Text PDFNew tools and refined frameworks for identifying and regulating endocrine-disrupting chemicals (EDCs) are being developed as our scientific understanding of how they work advances. Although focus has largely been on organic chemicals, the potential for metals to act as EDCs in aquatic systems is receiving increasing attention. Metal interactions with the endocrine system are complicated because some metals are essential to physiological systems, including the endocrine system, and nonessential metals can have similar physiochemical attributes that allow substitution into or interference with these systems.
View Article and Find Full Text PDFAlthough inflammation is a normal and beneficial response, it is also a key event in the pathology of many chronic diseases, including pulmonary and systemic particle-induced disease. In addition, inflammation is now considered as the key response in standard settings for inhaled particles and a critical endpoint in OECD-based sub-acute/ chronic animal inhalation testing protocols. In this paper, we discuss that whilst the role of inflammation in lung disease is undeniable, it is when inflammation deviates from normal parameters that adversity occurs.
View Article and Find Full Text PDFThe primary objective of the present study was to examine the influence of early systemic toxicity resulting from copper (Cu) exposure on metamorphic processes in Xenopus laevis. A 28-day exposure study with copper, initiated at developmental stage 10, was performed using test concentrations of 3.0, 9.
View Article and Find Full Text PDFObjective: The aim of the study was to assess the effect of exposure to copper-containing dust on lung function and inflammatory endpoints among workers of a German copper plant, effects rarely studied before.
Methods: One hundred four copper-exposed smelter workers and 70 referent workers from the precious metal and lead facilities were included, with different metal exposures in both groups due to the different process materials. Body plethysmography, exhaled nitric oxide (FeNO) measurements, and blood sampling were conducted in all workers.
Inhalation exposure to copper may occur during a range of occupational activities and the purpose of this study was to characterise the toxicological response to repeated inhalation of two copper compounds, representative of copper substances in large-scale production/use. Crl:CD(SD) rats were repeatedly exposed to aerosols of dicopper oxide (CuO) or copper sulphate pentahydrate (CuSO.5 HO) for 14-days as part of a range finding study at normalised copper doses of 0.
View Article and Find Full Text PDFCadmium toxicity occurs where there is absorption and accumulation of cadmium ions (Cd) in tissues beyond tolerable levels. Significant differences in the release of Cd from cadmium compounds in biological fluids, like gastric fluid, may indicate differences in bioavailability and absorption. This means that direct read-across from high solubility cadmium compounds to lower solubility compounds may not accurately reflect potential hazards.
View Article and Find Full Text PDFWith the ever-expanding number of manufactured nanomaterials (MNMs) under development there is a vital need for nanotoxicology studies that test the potential for MNMs to cause harm to health. An extensive body of work in cell cultures and animal models is vital to understanding the physicochemical characteristics of MNMs and the biological mechanisms that underlie any detrimental actions to cells and organs. In human subjects, exposure monitoring is combined with measurement of selected health parameters in small panel studies, especially in occupational settings.
View Article and Find Full Text PDFThe exercise of non-testing approaches in nanoparticles (NPs) hazard assessment is necessary for the risk assessment, considering cost and time efficiency, to identify, assess, and classify potential risks. One strategy for investigating the toxicological properties of a variety of NPs is by means of computational tools that decode how nano-specific features relate to toxicity and enable its prediction. This literature review records systematically the data used in published studies that predict nano (eco)-toxicological endpoints using machine learning models.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2020
Machine Learning (ML) techniques have been applied in the field of nanotoxicology with very encouraging results. Adverse effects of nanoforms are affected by multiple features described by theoretical descriptors, nano-specific measured properties, and experimental conditions. ML has been proven very helpful in this field in order to gain an insight into features effecting toxicity, predicting possible adverse effects as part of proactive risk analysis, and informing safe design.
View Article and Find Full Text PDFLength and aspect ratio represent important toxicity determinants of fibrous nanomaterials. We have previously shown that anatase TiO nanofibers (TiO NF) cause a dose-dependent decrease of cell viability as well as the loss of epithelial barrier integrity in polarized airway cell monolayers. Herein we have investigated the impact of fiber shortening, obtained by ball-milling, on the biological effects of TiO NF of industrial origin.
View Article and Find Full Text PDFGrinding and drilling of chrysotile asbestos-containing brake pads during the 20 century led to release of chrysotile, resulting in varying levels of workplace exposures of mechanics. Despite exposures, excess risk of mesothelioma remains in doubt. The toxicity of particulates is primarily derived through a combination of physicochemical properties and dose and as such this study aimed to determine properties of asbestos-containing brake debris (BD) which may influence pathogenicity and potential of mesothelioma.
View Article and Find Full Text PDFInroads have been made in our understanding of the risks posed to human health and the environment by nanoparticles (NPs) but this area requires continuous research and monitoring. Machine learning techniques have been applied to nanotoxicology with very encouraging results. This study deals with bridging physicochemical properties of NPs, experimental exposure conditions and characteristics with biological effects of NPs on a molecular cellular level from transcriptomics studies.
View Article and Find Full Text PDFNano-Particles (NPs) are well established as important components across a broad range of products from cosmetics to electronics. Their utilization is increasing with their significant economic and societal potential yet to be fully realized. Inroads have been made in our understanding of the risks posed to human health and the environment by NPs but this area will require continuous research and monitoring.
View Article and Find Full Text PDFCrit Rev Toxicol
January 2019
The global use of "asbestos" in various commercial products has led to a wide range and pervasive legacy of disease. One such use of chrysotile asbestos was brake pads and was utilized commonly in automobiles and heavy vehicles. The result of incorporation of chrysotile into brake pads is associated with the exposure of mechanics fitting and servicing vehicles to liberated chrysotile fibers.
View Article and Find Full Text PDFTitania (TiO) nanoparticles were surface modified using silica and citrate to implement a 'safe-by-design' approach for managing potential toxicity of titania nanoparticles by controlling surface redox reactivity. DLS and zeta-potential analyses confirmed the surface modification, and electron microscopy and surface area measurements demonstrated nanoscale dimensions of the particles. Electron paramagnetic resonance (EPR) was used to determine the exogenous generation of reactive oxygen species (ROS).
View Article and Find Full Text PDFMesothelioma is a fatal tumor of the pleura and is strongly associated with asbestos exposure. The molecular mechanisms underlying the long latency period of mesothelioma and driving carcinogenesis are unknown. Moreover, late diagnosis means that mesothelioma research is commonly focused on end-stage disease.
View Article and Find Full Text PDFTitanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials.
View Article and Find Full Text PDFBackground: Although the surface area metric has been proposed as a possible dose-metric for nanoparticles (NPs), it is limited to low-solubility NPs and the dose-metric for high-solubility NPs is poorly understood. In this study, we aimed to assess the appropriate dose-metric or response-metric for NPs using two cobalt (Co)-based NPs, cobalt monoxide (CoO) and cobalt oxide (Co3O4), which both show distinctive solubility, and determine the role of their soluble Co ions in inflammation.
Methods: We evaluated the physicochemical properties of NPs, including solubility in artificial lysosomal fluid (ALF, pH 5.
Wiley Interdiscip Rev Nanomed Nanobiotechnol
August 2016
Workers involved in producing nanomaterials or using nanomaterials in manufacturing plants are likely to have earlier and higher exposure to manufactured/engineered nanomaterials (ENM) than the general population. This is because both the volume handled and the probability of the effluence of 'free' nanoparticles from the handled volume are much higher during a production process than at any other stage in the lifecycle of nanomaterials and nanotechnology-enabled products. Risk assessment (RA) techniques using control banding (CB) as a framework for risk transfer represents a robust theory but further progress on implementing the model is required so that risk can be transferred to insurance companies.
View Article and Find Full Text PDFNo abstract.
View Article and Find Full Text PDFCarbon nanotubes are a valuable industrial product but there is potential for human pulmonary exposure during production and their fibrous shape raises the possibility that they may have effects like asbestos, which caused a worldwide pandemic of disease in the20th century that continues into present. CNT may exist as fibres or as more compact particles and the asbestos-type hazard only pertains to the fibrous forms of CNT. Exposure to asbestos causes asbestosis, bronchogenic carcinoma, mesothelioma, pleural fibrosis and pleural plaques indicating that both the lungs and the pleura are targets.
View Article and Find Full Text PDFThe analysis of nanoparticle (NP) hazard is currently a major research pre-occupation for particle toxicologists since there is a pressing requirement for a comprehensive understanding of nanoparticle hazard because of the wide spectrum of NP varying in composition, shape and size that require testing for risk assessment. The Biologically Effective Doses (BEDs) of nanoparticles, the dose entity that drives toxicity include charge, solubility, contaminants, shape and the ability to translocate from the site of deposition in the lungs. We point out here that all of these modes of toxicity are relevant and described for conventional pathogenic particles.
View Article and Find Full Text PDFNanoparticles (NPs) are tiny particles with a diameter of less than 100 nm. Traffic exhaust is a major source of combustion-derived NPs (CDNPs), which represent a significant component in urban air pollution. Epidemiological, panel and controlled human chamber studies clearly demonstrate that exposure to CDNPs is associated with multiple adverse cardiovascular effects in both healthy individuals and those with pre-existing cardiovascular disease.
View Article and Find Full Text PDFBackground: Carbon nanotubes (CNT) are fibre-like nanomaterials whose structural similarity to asbestos has raised concerns that they may also pose a mesothelioma hazard. The objective of this study was to examine the inflammatory potential of three CNT samples of differing length on the lungs and pleural cavity following introduction into the airspaces of mice.
Results: Aspiration of the two short/tangled and one long CNT sample into the lungs of mice resulted in a length-dependent inflammatory response at 1 week, i.