Objective: The optimal treatment paradigm for large arteriovenous malformations (AVMs) is controversial. One approach is volume-staged stereotactic radiosurgery (VS-SRS). The authors previously reported efficacy of VS-SRS for large AVMs in a multiinstitutional cohort; here they focus on risk of symptomatic adverse radiation effects (AREs).
View Article and Find Full Text PDFBackground: Optimal treatment paradigm for large arteriovenous malformations (AVMs) is controversial. Volume-staged stereotactic radiosurgery (VS-SRS) provides an effective option for these high-risk lesions, but optimizing treatment for these recalcitrant and rare lesions has proven difficult.
Methods: This is a multi-centered retrospective review of patients treated with a planned prospective volume staging approach to stereotactically treat the entire nidus of an AVM with volume stages separated by intervals of 3-6 months.
Background: Current practice in neurosurgical needle insertion is limited by the straight trajectories inherent with rigid probes. One technique allowing curvilinear trajectories involves flexible bevel-tipped needles, which bend during insertion due to their asymmetry. In the brain, safety will require avoidance of the sharp tips often used in laboratory studies, in favor of a more rounded profile.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2015
Deep needle insertion into brain is important for both diagnostic and therapeutic clinical interventions. We have developed an automated system for robotically steering flexible needles within the brain to improve targeting accuracy. In this work, we have developed a finite element needle-tissue interaction model that allows for the investigation of safe parameters for needle steering.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
Thin, flexible needles can be steered along nonlinear paths to reach deep anatomical structures within the human body. This study builds upon previous work involving steering of bevel-tipped needles by inserting while rotating in a duty-cycled fashion. Here we investigate how needle material and radius, duty cycle, and tissue stiffness affect needle curvature.
View Article and Find Full Text PDFConf Proc IEEE Int Conf Syst Man Cybern
January 2013
Bevel-tipped flexible needles can be robotically steered to reach clinical targets along curvilinear paths in 3D. Manual needle insertion allows the clinician to control the insertion speed, ensuring patient safety. This paper presents a control law for automatic 3D steering of manually inserted flexible needles, enabling path-following control.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) affects nearly 150,000 patients per year in the US, and is associated with high mortality ( approximately 40%) and suboptimal options for patient care. Mechanical ventilation and extracorporeal membrane oxygenation are limited to short-term use due to ventilator-induced lung injury and poor biocompatibility, respectively. In this report, we describe the development of a biohybrid lung prototype, employing a rotating endothelialized microporous hollow fiber (MHF) bundle to improve blood biocompatibility while MHF mixing could contribute to gas transfer efficiency.
View Article and Find Full Text PDF