Publications by authors named "Couttet P"

Suppression of premature termination codons (PTCs) by translational readthrough is a promising strategy to treat a wide variety of severe genetic diseases caused by nonsense mutations. Here, we present two potent readthrough promoters-NVS1.1 and NVS2.

View Article and Find Full Text PDF

Sotuletinib (BLZ945), a CSF1-R specific kinase inhibitor developed for the treatment of Amyotrophic Lateral Sclerosis, induced liver enzyme elevation in absence of hepatocellular lesions in preclinical rat and monkey studies. The monocytic cell family, including Kupffer cells, e.g.

View Article and Find Full Text PDF

Background: Engineered tissues and cell therapies based on human induced pluripotent stem cells (iPSCs) represent a promising approach for novel medicines. However, iPSC-derived cells and tissues may contain residual undifferentiated iPSCs that could lead to teratoma formation after implantation into patients. As a consequence, highly sensitive and specific methods for detecting residual undifferentiated iPSCs are indispensable for safety evaluations of iPSC-based therapies.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes.

View Article and Find Full Text PDF

FGF19 signaling through the FGFR4/β-klotho receptor complex has been shown to be a key driver of growth and survival in a subset of hepatocellular carcinomas, making selective FGFR4 inhibition an attractive treatment opportunity. A kinome-wide sequence alignment highlighted a poorly conserved cysteine residue within the FGFR4 ATP-binding site at position 552, two positions beyond the gate-keeper residue. Several strategies for targeting this cysteine to identify FGFR4 selective inhibitor starting points are summarized which made use of both rational and unbiased screening approaches.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and it is the third leading cause of cancer-related deaths worldwide. Recently, aberrant signaling through the FGF19/FGFR4 axis has been implicated in HCC. Here, we describe the development of FGF401, a highly potent and selective, first in class, reversible-covalent small-molecule inhibitor of the kinase activity of FGFR4.

View Article and Find Full Text PDF

Ofatumumab is the first, fully human, anti-CD20 monoclonal antibody in Phase 3 development for multiple sclerosis (MS). The study focused on changes in lymphocyte subsets in blood and lymphoid tissues and on potential novel biomarkers as a result of anti-CD20 antibody action in Cynomolgus monkeys treated with human equivalent doses of subcutaneous (s.c.

View Article and Find Full Text PDF

Drug-induced cholestasis is one of the most severe manifestations of drug-induced liver injury. Drug-induced cholestasis is characterized by an accumulation of endogenous metabolites normally excreted in the bile such as bile salts, cholesterol, bilirubin, or drug metabolites. The possibility to determine early in the drug development process whether a compound presents a risk of inducing drug-induced cholestasis is key information.

View Article and Find Full Text PDF

The colony-stimulating factor-1 (CSF-1) receptor pathway has been implicated in a variety of diseases, and CSF-1-dependent mechanisms are also involved in bloodborne protein clearance. Lacnotuzumab is a novel, high-affinity, humanized, anti-CSF-1 monoclonal antibody that prevents CSF-1-mediated receptor activation. This phase 1, two-part, double-blind study in healthy volunteers assessed the safety and tolerability of lacnotuzumab and its pharmacokinetics (PK) and pharmacodynamic properties.

View Article and Find Full Text PDF

The FGF19- fibroblast growth factor receptor (FGFR4)-βKlotho (KLB) pathway plays an important role in the regulation of bile acid (BA) homeostasis. Aberrant activation of this pathway has been described in the development and progression of a subset of liver cancers including hepatocellular carcinoma, establishing FGFR4 as an attractive therapeutic target for such solid tumors. FGF401 is a highly selective FGFR4 kinase inhibitor being developed for hepatocellular carcinoma, currently in phase I/II clinical studies.

View Article and Find Full Text PDF

Background: Circulating microRNAs are undergoing exploratory use as safety biomarkers in drug development. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is one common approach used to quantitate levels of microRNAs in samples that includes the use of a standard curve of calibrators fit to a regression model. Guidelines are needed for setting assay quantitation thresholds that are appropriate for this method and to biomarker pre-validation.

View Article and Find Full Text PDF

Signal peptide peptidase-like 2a (SPPL2a) is an aspartic intramembrane protease which has recently been shown to play an important role in the development and function of antigen presenting cells such as B lymphocytes and dendritic cells. In this paper, we describe the discovery of the first selective and orally active SPPL2a inhibitor (S)-2-cyclopropyl-N1-((S)-5,11-dioxo-10,11-dihydro-1H,3H,5H-spiro[benzo[d]pyrazolo[1,2-a][1,2]diazepine-2,1'-cyclopropan]-10-yl)-N4-(5-fluoro-2-methylpyridin-3-yl)succinamide 40 (SPL-707). This compound shows adequate selectivity against the closely related enzymes γ-secretase and SPP and a good pharmacokinetic profile in mouse and rat.

View Article and Find Full Text PDF

Primary human hepatocyte (PHH) sandwich cultures from five different donors were daily exposed to cyclosporine A (CsA), ibuprofen (IBU), chlorpromazine (CPZ), amiodarone (AMI) and paracetamol (APAP) at their respective C (total) for short-term (1-3 days) and long-term treatment (14 days). Whole genome mRNA profiles (34,693 genes in total) were conducted using an Illumina microarray platform. The impact of compound treatments on gene signatures involved in liver differentiation, cholestasis and in bile acid homeostasis was evaluated.

View Article and Find Full Text PDF

Arctigenin has previously been identified as a potential anti-tumor treatment for advanced pancreatic cancer. However, the mechanism of how arctigenin kills cancer cells is not fully understood. In the present work we studied the mechanism of toxicity by arctigenin in the human pancreatic cell line, Panc-1, with special emphasis on the mitochondria.

View Article and Find Full Text PDF

Extracellular microRNAs (miRNAs) represent a promising new source of toxicity biomarkers that are sensitive indicators of site of tissue injury. In order to establish reliable approaches for use in biomarker validation studies, the HESI technical committee on genomics initiated a multi-site study to assess sources of variance associated with quantitating levels of cardiac injury induced miRNAs in biofluids using RT-qPCR. Samples were generated at a central site using a model of acute cardiac injury induced in male Wistar rats by 0.

View Article and Find Full Text PDF

The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice.

View Article and Find Full Text PDF

Dipeptidyl peptidase IV (DPP4) is a peptidase whose inhibition is beneficial in Type II diabetes treatment. Several evidences suggest potential implication of DPP4 in skin disorders such as psoriasis, keloids and fibrotic skin diseases where its inhibition could also be beneficial. DPP4 expression in human skin was described mainly in dermal fibroblasts and a subset of keratinocytes in the basal layer.

View Article and Find Full Text PDF

MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*).

View Article and Find Full Text PDF

The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans.

View Article and Find Full Text PDF

Anti-cancer therapy based on anthracyclines (DNA intercalating Topoisomerase II inhibitors) is limited by adverse effects of these compounds on the cardiovascular system, ultimately causing heart failure. Despite extensive investigations into the effects of doxorubicin on the cardiovascular system, the molecular mechanisms of toxicity remain largely unknown. MicroRNAs are endogenously transcribed non-coding 22 nucleotide long RNAs that regulate gene expression by decreasing mRNA stability and translation and play key roles in cardiac physiology and pathologies.

View Article and Find Full Text PDF

New biomarkers of drug-induced liver injury (DILI) are required in the clinic and in preclinical pharmaceutical evaluation. Liver-enriched microRNAs are promising serum biomarkers of acetaminophen-induced acute liver injury in mice. The utility of circulating microRNAs as biomarkers of human acute DILI is discussed in the context of correlation with existing biomarkers of liver injury and patient outcomes in acetaminophen toxicity, mechanisms of cellular microRNA release, and their potential advantages over current clinical biomarkers of DILI.

View Article and Find Full Text PDF

The two related basic helix-loop-helix, TAL1 and LYL1, and their cofactor LIM-only-2 protein (LMO2) are present in blood and endothelial cells. While their crucial role in early hematopoiesis is well established, their function in endothelial cells and especially in angiogenesis is less understood. Here, we identified ANGIOPOIETIN-2 (ANG-2), which encodes a major regulator of angiogenesis, as a direct transcriptional target of TAL1, LYL1 and LMO2.

View Article and Find Full Text PDF

Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis.

View Article and Find Full Text PDF

In vitro, concentrations ≥ 10 μM of nilotinib were needed to induce markers of cytotoxicity, apoptosis, and endoplasmic reticulum stress in both neonatal rat ventricular myocytes, a putative target tissue, and non-target heart fibroblasts, indicating a lack of cardiomyocyte-specific nilotinib toxicity in vitro. In rats, oral nilotinib treatment at 80 mg/kg for 4 weeks induced increased heart weight; however, this was not associated with relevant histopathological changes or effects on heart function. Thus, nilotinib at and above clinically relevant concentrations (4.

View Article and Find Full Text PDF