The spread of antibiotic resistance genes (ARGs) in aquatic ecosystems poses a serious risk to environmental and public health, making advanced detection and monitoring methods essential. This review provides a fresh perspective and a critical evaluation of recent advances in detecting and monitoring ARGs in aquatic environments. It highlights the latest innovations in molecular, bioinformatic, and environmental techniques.
View Article and Find Full Text PDFMicroorganisms play pivotal roles in shaping ecosystems and biogeochemical cycles. Their intricate interactions involve complex biochemical processes. Fourier Transform-Infrared (FT-IR) spectroscopy is a powerful tool for monitoring these interactions, revealing microorganism composition and responses to the environment.
View Article and Find Full Text PDFRapid industrialization and urbanization have led to widespread metal contamination in aquatic ecosystems. This study explores the metal tolerance and biosorption characteristics of four bacterial strains ( sp. L2, sp.
View Article and Find Full Text PDFBackground: Previous publications show that the addition of a phenolic antioxidant to an antifungal agent, considerably enhances the antifungal activity.
Objective: Synthesis of novel compounds combining phenolic units with linear or cyclic nitrogencontaining organic molecules with antioxidant/antifungal activity using methodologies previously developed in the group.
Methods: Several N- [1,2-dicyano-2- (arylidenamino) vinyl]-O-alkylformamidoximes 3 were synthesized and cyclized to 4,5-dicyano-N- (N´-alcoxyformimidoyl)-2-arylimidazoles 4 upon reflux in DMF, in the presence of manganese dioxide or to 6-cyano-8-arylpurines 5 when the reagent was refluxed in acetonitrile with an excess of triethylamine.
A selection of 1-amino-2-arylidenamine-1,2-(dicyano)ethenes was synthesized and cyclized to 2-aryl-4,5-dicyano-1-imidazoles upon reflux in ethyl acetate/acetonitrile, in the presence of manganese dioxide. These compounds were tested for their antioxidant capacity by cyclic voltammetry, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and deoxyribose degradation assays. The minimum inhibitory concentration of all compounds was evaluated against two yeast species, and .
View Article and Find Full Text PDFPlanta Med
March 2017
Curcumin is a natural polyphenolic compound isolated from turmeric () with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success.
View Article and Find Full Text PDFAn approach to the interrogation of a linearly chirped fiber Bragg grating (LCFBG) sensor using a linearly frequency-modulated (or chirped) optical waveform (LFMOW) with a high resolution is proposed and experimentally demonstrated. An LFMOW is generated at a laser diode through linear frequency modulation. The generated LFMOW is then launched into an LCFBG pair consisting of two identical LCFBGs, with one serving as a sensing LCFBG and the other as a reference LCFBG.
View Article and Find Full Text PDFColorectal carcinoma (CRC) is one of the most common causes of cancer-related mortality. Short-chain fatty acids secreted by dietary propionibacteria from the intestine, such as acetate, induce apoptosis in CRC cells and may therefore be relevant in CRC prevention and therapy. We previously reported that acetic acid-induced apoptosis in Saccharomyces cerevisiae cells involves partial vacuole permeabilization and release of Pep4p, the yeast cathepsin D (CatD), which has a protective role in this process.
View Article and Find Full Text PDFThe yeast apoptosis field emerged with the finding that key components of the apoptotic machinery are conserved in these simple eukaryotes. Thus it became possible to exploit these genetically tractable organisms to improve our understanding of the intricate mechanisms of cell death in higher eukaryotes and of severe human diseases associated with apoptosis dysfunctions. Early on, it was recognized that a mitochondria-mediated apoptotic pathway showing similarities to the mammalian intrinsic pathway was conserved in yeast.
View Article and Find Full Text PDFDNA/Cationic liposome complexes (lipoplexes) have been widely used as non-viral vectors for transfection. Neutral lipids in liposomal formulation are determinant for transfection efficiency using these vectors. In this work, we studied the potential of monoolein (MO) as helper lipid for cellular transfection.
View Article and Find Full Text PDFThe damaging consequences of oxidative stress are known to be involved in several pathologies. So, the development of new drugs that can aid cells to cope with excessive levels of free radicals still assumes great relevance. Here, we investigated the antioxidant properties of four novel di(hetero)arylamines (named MJQ1, MJQ3, MJQ4 and MJQ5), sharing a common benzo[b]thiophene nucleus (an indole analogue), against oxidative damage induced to H9c2 myoblasts.
View Article and Find Full Text PDFDrug Discov Ther
June 2010
Reactive oxygen (ROS) and nitrogen (RNS) species are known to accumulate intracellularly due to both exogenous and/or endogenous factors. In normal physiological conditions, these reactive species are maintained in an equilibrium state by the cells' antioxidant defence systems. In addition, they are recognised to play important roles in several physiological functions.
View Article and Find Full Text PDFOxidative stress has been connected to various forms of cardiovascular diseases. Previously, we have been investigating the potential of new nitrogen-containing synthetic compounds using a neuronal cell model and different oxidative stress conditions in order to elucidate their potential to ameliorate neurodegenerative diseases. Here, we intended to extend these initial studies and investigate the protective role of four of those new synthetic compounds (FMA4, FMA7, FMA762 and FMA796) against oxidative damage induced to H9c2 cardiomyoblasts by tert-butylhydroperoxide (t-BHP).
View Article and Find Full Text PDFOxidative DNA damage has been described as an important type of damage that occurs in neuronal cells, with severe implications in many neurodegenerative diseases and in aging. We have previously reported the protection of four new synthetic nitrogen compounds (FMA4, FMA7, FMA762 and FMA796) against oxidative stress conditions. In this work, we studied their effects on oxidative DNA damage induced in rat pheochromocytoma (PC12) cells, using the Comet assay, and compared them with a natural antioxidant, quercetin.
View Article and Find Full Text PDFEur J Pharmacol
December 2008
Biological systems are frequently exposed to excessive reactive oxygen species, causing a disturbance in the cells natural antioxidant defence systems and resulting in damage to all biomolecules, including nucleic acids. In fact, oxidative DNA damage is described as the type of damage most likely to occur in neuronal cells. In this study, three polyphenolic compounds, luteolin, quercetin and rosmarinic acid, were investigated for their protective effects against oxidative DNA damage induced in PC12 cells, a neuronal cell model.
View Article and Find Full Text PDFWe investigated the antioxidant properties of two synthetic diarylamines, MJQ1 and MJQ2. For one of them (MJQ1) the synthesis procedure is herein described. The compounds showed maximal protection of ADP/Fe(2+) induced mitochondrial lipid peroxidation for 50nM (MJQ1) and 60muM (MJQ2) concentrations.
View Article and Find Full Text PDFReactive oxygen (ROS) and nitrogen (RNS) species are known to be involved in many degenerative diseases. This study reports four new nitrogen compounds from organic synthesis, identified as FMA4, FMA7, FMA762 and FMA796, which differ mainly by the number of hydroxyl groups within their phenolic unit. Their potential role as antioxidants was evaluated in PC12 cells by assessing their protection against oxidative and nitrosative insults.
View Article and Find Full Text PDFJ Tissue Eng Regen Med
March 2008
Materials in particulate form have been the subjects of intensive research in view of their use as drug delivery systems. While within this application there are still issues to be addressed, these systems are now being regarded as having a great potential for tissue engineering applications. Bone repair is a very demanding task, due to the specific characteristics of skeletal tissues, and the design of scaffolds for bone tissue engineering presents several difficulties.
View Article and Find Full Text PDFIn a previous work, we described the use of starch-based microparticles as vehicles for the controlled release of corticosteroids. The goal of the present work is to evaluate the potential of these microparticles to incorporate and release platelet-derived growth factor (PDGF). The loading efficiency and release profile were evaluated, and PDGF was incorporated into and released from the matrix of starch-based microparticles.
View Article and Find Full Text PDFJ Biomed Mater Res A
March 2007
Our purpose was to evaluate the in vivo endosseous response to three starch-based scaffolds implanted in rats (n = 54). We implanted the three scaffold groups; a 50/50 (wt %) blend of corn starch and ethylene-vinyl alcohol (SEVA-C), the same composition coated with a biomimetic calcium phosphate (Ca-P) layer (SEVA-C/CaP), and a 50/50 (wt %) blend of corn starch and cellulose acetate (SCA), all produced by extrusion with blowing agents, into distal femurs proximal to the epiphyseal plate, for 1, 3, or 6 weeks. Our results showed that at 1 week considerable reparative bone formed around all scaffold groups, although the bone was separated from the scaffold by an intervening soft tissue interfacial zone that comprised two distinct compartments: the surface of the scaffold was occupied by multinucleate giant cells and the compartment between these cells and the surrounding bone was occupied by a streaming fibrous-like tissue.
View Article and Find Full Text PDFThere is a clear need for the development of microparticles that can be used simultaneously as carriers of stem/progenitor cells and as release systems for bioactive agents, such as growth factors or differentiation agents. In addition, when thinking on bone-tissue-engineering applications, it would be very useful if these microparticles are biodegradable and could be made to be bioactive. Microparticles with all those characteristics could be cultured together with adherent cells in appropriate bioreactors to form in vitro constructs that can then be used in tissue-engineering therapies.
View Article and Find Full Text PDFIn this study we used new nitrogen compounds obtained by organic synthesis whose structure predicted an antioxidant potential and then an eventual development as molecules of pharmacological interest in diseases involving oxidative stress. The compounds, identified as FMA4, FMA5, FMA7 and FMA8 differ in the presence of hydroxyl groups located in the C-3 and/or C-4 position of a phenolic unit, which is possibly responsible for their free radicals' buffering capacity. Data from the DPPH discoloration method confirm the high antiradical efficiency of the compounds.
View Article and Find Full Text PDF