Cotranscriptional RNA folding pathways typically involve the sequential formation of folding intermediates. Existing methods for cotranscriptional RNA structure probing map the structure of nascent RNA in the context of a terminally arrested transcription elongation complex. Consequently, the rearrangement of RNA structures as nucleotides are added to the transcript can be inferred but is not assessed directly.
View Article and Find Full Text PDFRNA begins to fold as it is transcribed by an RNA polymerase. Consequently, RNA folding is constrained by the direction and rate of transcription. Understanding how RNA folds into secondary and tertiary structures therefore requires methods for determining the structure of cotranscriptional folding intermediates.
View Article and Find Full Text PDFRNA begins to fold as it is transcribed by an RNA polymerase. Consequently, RNA folding is constrained by the direction and rate of transcription. Understanding how RNA folds into secondary and tertiary structures therefore requires methods for determining the structure of cotranscriptional folding intermediates.
View Article and Find Full Text PDFSynchronized transcription elongation complexes (TECs) are a fundamental tool for investigating the biochemical properties of RNA polymerases (RNAPs) and nascent RNA. We recently developed a standardized system for isolating high-purity synchronized E. coli RNAP TECs from an in vitro transcription reaction.
View Article and Find Full Text PDFCotranscriptional folding is a fundamental step in RNA biogenesis and the basis for many RNA-mediated gene regulation systems. Understanding how RNA folds as it is synthesized requires experimental methods that can systematically identify intermediate RNA structures that form during transcription. Cotranscriptional RNA chemical probing experiments achieve this by applying high-throughput RNA structure probing to an in vitro transcribed array of cotranscriptionally folded intermediate transcripts.
View Article and Find Full Text PDFSynchronized transcription elongation complexes (TECs) are a fundamental tool for in vitro studies of transcription and RNA folding. Transcription elongation can be synchronized by omitting one or more nucleoside triphosphates from an in vitro transcription reaction so that RNA polymerase can only transcribe to the first occurrence of the omitted nucleotide(s) in the coding DNA strand. This approach was developed over four decades ago and has been applied extensively in biochemical investigations of RNA polymerase enzymes but has not been optimized for RNA-centric assays.
View Article and Find Full Text PDFETS1 is the archetype of the ETS transcription factor (TF) family. ETS TFs share a DNA-binding domain, the ETS domain. All ETS TFs recognize a core GGA(A/T) binding site, and thus ETS TFs are found to redundantly regulate the same genes.
View Article and Find Full Text PDF