Publications by authors named "Courtney Shea"

Praliciguat is a soluble guanylate cyclase stimulator that elicits hemodynamic, anti-inflammatory, and antifibrotic effects in preclinical models of metabolic dysfunction. We assessed the metabolic effects of praliciguat in a mouse diet-induced obesity (DIO) model housed at thermoneutrality. At 6 weeks old, male C57BL/6N mice were either maintained on low-fat diet (LFD, lean mice) or placed on 60% high-fat diet (HFD, DIO mice).

View Article and Find Full Text PDF
Article Synopsis
  • Prolonged high-fat diets worsen cardiovascular, renal, and metabolic health in hypertensive rats with altered kidney development, leading to increased blood pressure and fat accumulation.
  • The study tested the effects of a sodium-glucose cotransporter 2 (SGLT2) inhibitor (empagliflozin) alongside a soluble guanylate cyclase (sGC) stimulator (praliciguat) to see if their combination would improve health outcomes in these rats.
  • Results showed that the combination therapy significantly reduced blood pressure, improved glucose tolerance, and decreased weight gain, indicating a more effective approach to treating the negative effects of a high-fat diet in hypertension compared to using either drug alone.
View Article and Find Full Text PDF

Praliciguat, a clinical-stage soluble guanylate cyclase (sGC) stimulator, increases cGMP via the nitric oxide-sGC pathway. Praliciguat has been shown to be renoprotective in rodent models of hypertensive nephropathy and renal fibrosis. In the present study, praliciguat alone and in combination with enalapril attenuated proteinuria in the obese ZSF1 rat model of diabetic nephropathy.

View Article and Find Full Text PDF

Nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic 3',5' GMP (cGMP) signaling plays a central role in regulation of diverse processes including smooth muscle relaxation, inflammation, and fibrosis. sGC is activated by the short-lived physiologic mediator NO. sGC stimulators are small-molecule compounds that directly bind to sGC to enhance NO-mediated cGMP signaling.

View Article and Find Full Text PDF

Reduced nitric oxide (NO) and a decrease in cGMP signaling mediated by soluble guanylate cyclase (sGC) has been linked to the development of several cardiorenal diseases. Stimulation of sGC is a potential means for enhancing cGMP production in conditions of reduced NO bioavailability. The purpose of our studies was to determine the effects of praliciguat, a clinical-stage sGC stimulator, in a model of cardiorenal failure.

View Article and Find Full Text PDF

Soluble guanylate cyclase (sGC), a key signal-transduction enzyme, increases the conversion of guanosine-5'-triphosphate to cGMP upon binding of nitric oxide (NO). Endothelial dysfunction and/or reduced NO signaling have been implicated in cardiovascular disease pathogenesis and complications of diabetes and have been associated with other disease states and aging. Soluble guanylate cyclase (sGC) stimulators are small-molecule drugs that bind sGC and enhance NO-mediated cGMP signaling.

View Article and Find Full Text PDF

Background And Purpose: Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of metabolic syndrome and is characterized by steatosis, inflammation and fibrosis. Soluble guanylate cyclase (sGC) stimulation reduces inflammation and fibrosis in experimental models of lung, kidney and heart disease. Here, we tested whether sGC stimulation is also effective in experimental NASH.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman's Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target.

View Article and Find Full Text PDF

Background & Aims: Linaclotide is a minimally absorbed agonist of guanylate cyclase-C (GUCY2C or GC-C) that reduces symptoms associated with irritable bowel syndrome with constipation (IBS-C). Little is known about the mechanism by which linaclotide reduces abdominal pain in patients with IBS-C.

Methods: We determined the effects of linaclotide on colonic sensory afferents in healthy mice and those with chronic visceral hypersensitivity.

View Article and Find Full Text PDF

The natural hormone uroguanylin regulates intestinal fluid homeostasis and bowel function through activation of guanylate cyclase-C (GC-C), resulting in increased intracellular cyclic guanosine-3',5'-monophosphate (cGMP). We report the effects of uroguanylin-mediated activation of the GC-C/cGMP pathway in vitro on extracellular cGMP transport and in vivo in rat models of inflammation- and stress-induced visceral hypersensitivity. In vitro exposure of intestinal Caco-2 cells to uroguanylin stimulated bidirectional, active extracellular transport of cGMP into luminal and basolateral spaces.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionq2a8h2coet36dmcem0kmd44c2n0e884o): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once