Publications by authors named "Courtney R Lavalle"

Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer death in the US. The protein kinase D (PKD) family has emerged as a promising target for cancer therapy with PKD1 being most intensively studied; however, its role in HNSCC has not been investigated.

Methods: The expression of PKD was evaluated in human HNSCC by quantitative RT-PCR, Western blot and immunohistochemistry.

View Article and Find Full Text PDF

In prostate cancer, androgen/androgen receptor (AR) and their downstream targets play key roles in all stages of disease progression. The protein kinase D (PKD) family, particularly PKD1, has been implicated in prostate cancer biology. Here, we examined the cross-regulation of PKD1 by androgen signaling in prostate cancer cells.

View Article and Find Full Text PDF

Protein kinase D (PKD) acts as a major mediator of several signaling pathways related to cancer development. Aberrant PKD expression and activity have been shown in multiple cancers, and novel PKD inhibitors show promising anticancer activities. Despite these advances, the mechanisms through which PKD contributes to the pathogenesis of cancer remain unknown.

View Article and Find Full Text PDF

Protein kinase D (PKD) belongs to a family of serine/threonine kinases that play an important role in basic cellular processes and are implicated in the pathogenesis of several diseases. Progress in our understanding of the biological functions of PKD has been limited due to the lack of a PKD-specific inhibitor. The benzoxoloazepinolone CID755673 was recently reported as the first potent and kinase-selective inhibitor for this enzyme.

View Article and Find Full Text PDF

Protein kinase D (PKD) is a member of a novel family of serine/threonine kinases that regulate fundamental cellular processes. PKD is implicated in the pathogenesis of several diseases, including cancer. Progress in understanding the biological functions and therapeutic potential of PKD has been hampered by the lack of specific inhibitors.

View Article and Find Full Text PDF

Protein kinase D is a novel family of serine/threonine kinases and diacylglycerol receptors that belongs to the calcium/calmodulin-dependent kinase superfamily. Evidence has established that specific PKD isoforms are dysregulated in several cancer types, and PKD involvement has been documented in a variety of cellular processes important to cancer development, including cell growth, apoptosis, motility, and angiogenesis. In light of this, there has been a recent surge in the development of novel chemical inhibitors of PKD.

View Article and Find Full Text PDF

Background: Protein kinase D (PKD) has been implicated in a wide range of cellular processes and pathological conditions including cancer. However, targeting PKD therapeutically and dissecting PKD-mediated cellular responses remains difficult due to lack of a potent and selective inhibitor. Previously, we identified a novel pan-PKD inhibitor, CID755673, with potency in the upper nanomolar range and high selectivity for PKD.

View Article and Find Full Text PDF
Article Synopsis
  • PKD (Protein kinase D) is a critical family of kinases involved in various cellular functions and diseases, but research is limited due to a lack of specific inhibitors.
  • The discovery of CID755673, a selective and potent small molecule inhibitor for PKD1, was achieved through high throughput screening of a large library of compounds.
  • CID755673 effectively inhibits PKD1 activity in cells, blocking key biological processes and showing potential to hinder prostate cancer cell growth and movement.
View Article and Find Full Text PDF