Low-cost markerless motion capture systems offer the potential for 3D measurement of joint angles during human movement. This study aimed to validate a smartphone-based markerless motion capture system's (OpenCap) derived lower extremity kinematics during common return-to-sport tasks, comparing it to an established optoelectronic motion capture system. Athletes with prior anterior cruciate ligament reconstruction (12-18 months post-surgery) performed three movements: a jump-landing-rebound, single-leg hop, and lateral-vertical hop.
View Article and Find Full Text PDFContext: Impact magnitude, such as peak tibial acceleration, may be associated with lower extremity injury risk and can be measured with an inertial sensor. An understanding of impact magnitude across functional tasks could guide clinicians in exercise prescription during rehabilitation of lower extremity injuries.
Objectives: To determine (1) differences in impact magnitude based on task and (2) which tasks have asymmetrical impact magnitude based on limb dominance.
The optimal set of return to sport (RTS) tests after anterior cruciate ligament (ACL) injury and ACL reconstruction (ACLR) remains elusive. Many athletes fail to pass current RTS test batteries, fail to RTS, or sustain secondary ACL injuries if they do RTS. The purpose of this review is to summarize current literature regarding functional RTS testing after ACLR and to encourage clinicians to have patients "think" (add a secondary cognitive task) outside the "box" (in reference to the box used during the drop vertical jump task) when performing functional RTS tests.
View Article and Find Full Text PDFBackground: Elite female athletes who successfully return to sport after anterior cruciate ligament reconstruction (ACLR) represent a high-risk group for secondary injury. Little is known about how the functional profile of these athletes compares to their teammates who have not sustained ACL injuries.
Purpose: To compare elite collegiate female athletes who were able to successfully return to sport for at least one season following ACLR to their teammates with no history of ACLR with regard to self-reported knee function, kinetics, and kinematics during a double limb jump-landing task.
(1) Background: Biomechanics during landing tasks, such as the kinematics and kinetics of the knee, are altered following anterior cruciate ligament (ACL) injury and reconstruction. These variables are recommended to assess prior to clearance for return to sport, but clinicians lack access to the current gold-standard laboratory-based assessment. Inertial sensors serve as a potential solution to provide a clinically feasible means to assess biomechanics and augment the return to sport testing.
View Article and Find Full Text PDF