Our understanding of heterochromatin nanostructure and its capacity to mediate gene silencing in a living cell has been prevented by the diffraction limit of optical microscopy. Thus, here to overcome this technical hurdle, and directly measure the nucleosome arrangement that underpins this dense chromatin state, we coupled fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between histones core to the nucleosome, with molecular editing of heterochromatin protein 1 alpha (HP1α). Intriguingly, this super-resolved readout of nanoscale chromatin structure, alongside fluorescence fluctuation spectroscopy (FFS) and FLIM-FRET analysis of HP1α protein-protein interaction, revealed nucleosome arrangement to be differentially regulated by HP1α oligomeric state.
View Article and Find Full Text PDFInterleukin (IL-)11, an IL-6 family cytokine, has pivotal roles in autoimmune diseases, fibrotic complications, and solid cancers. Despite intense therapeutic targeting efforts, structural understanding of IL-11 signalling and mechanistic insights into current inhibitors are lacking. Here we present cryo-EM and crystal structures of the human IL-11 signalling complex, including the complex containing the complete extracellular domains of the shared IL-6 family β-receptor, gp130.
View Article and Find Full Text PDFSmall heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones present in all kingdoms of life that inhibit protein misfolding and aggregation. Despite their importance in proteostasis, the structure-function relationships of sHSPs remain elusive. Human sHSPs are characterised by a central, highly conserved α-crystallin domain (ACD) and variable-length N- and C-terminal regions.
View Article and Find Full Text PDFSmall heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones that inhibit amyloid fibril formation; however, their mechanisms of action remain poorly understood. sHSPs comprise a conserved α-crystallin domain flanked by variable N- and C-terminal regions. To investigate the functional contributions of these three regions, we compared the chaperone activities of various constructs of human αB-crystallin (HSPB5) and heat-shock 27-kDa protein (Hsp27, HSPB1) during amyloid formation by α-synuclein and apolipoprotein C-II.
View Article and Find Full Text PDFHuman apolipoprotein (apo) C-II is one of several plasma apolipoproteins that form amyloid deposits in vivo and is an independent risk factor for cardiovascular disease. Lipid-free apoC-II readily self-assembles into twisted-ribbon amyloid fibrils but forms straight, rod-like amyloid fibrils in the presence of low concentrations of micellar phospholipids. Charge mutations exerted significantly different effects on rod-like fibril formation compared to their effects on twisted-ribbon fibril formation.
View Article and Find Full Text PDFThe apolipoprotein family is structurally defined by amphipathic α-helical regions that interact with lipid surfaces. In the absence of lipid, human apolipoprotein (apo) C-II also forms well-defined amyloid fibrils with cross-β structure. Formation of this β-structure is accompanied by the burial of two charged residues, K30 and D69, that form an ion-pair within the amyloid fibril core.
View Article and Find Full Text PDFApolipoproteins form amphipathic helical structures that bind lipid surfaces. Paradoxically, lipid-free apolipoproteins display a strong propensity to form cross-β structure and self-associate into disease-related amyloid fibrils. Studies of apolipoprotein C-II (apoC-II) amyloid fibrils suggest that a K30-D69 ion pair accounts for the dual abilities to form helix and cross-β structure.
View Article and Find Full Text PDFPlasma apolipoproteins form amphipathic α helices in lipid environments but in the lipid-free state show a high propensity to form β structure and self-associate into amyloid fibrils. The widespread occurrence of apolipoproteins in amyloid plaques suggests disease-related roles, specifically in atherosclerosis. To reconcile the dual abilities of apolipoproteins to form either α helices or cross-β sheet structures, we examined fibrils formed by human apolipoprotein C-II (apoC-II).
View Article and Find Full Text PDFProtein misfolding and aggregation, leading to amyloid fibril formation, are characteristic of many devastating and debilitating amyloid diseases. Accordingly, there is significant interest in the mechanisms underlying amyloid fibril formation and identification of possible intervention tools. Small molecule drug compounds approved for human use or for use in phase I-III clinical trials were investigated for their effects on amyloid formation by human apolipoprotein (apo) C-II.
View Article and Find Full Text PDFThe misfolding, aggregation, and accumulation of proteins as amyloid fibrils is a defining characteristic of several debilitating diseases. Human apolipoprotein C-II (apoC-II) amyloid fibrils are representative of the fibrils formed by a number of plasma apolipoproteins implicated in amyloid-related disease. Previous structural analyses identified a buried charge pair between residues K30 and D69 within apoC-II amyloid fibrils.
View Article and Find Full Text PDF