Publications by authors named "Courtney McDonald"

Cell therapies as treatments for neonatal conditions have attracted significant research and parent interest over the last two decades. Mesenchymal stromal cells, umbilical cord blood cells and neural stem cells translate from lab, to preclinical and into clinical trials, with contributions being made from all over the world. Effective and timely translation involves frequent reflection and consultation from research-adjacent fields (i.

View Article and Find Full Text PDF

Background: Evidence from preclinical studies in small and large animal models has shown neuroprotective effects of intravenous administration of umbilical cord blood derived cells (UCBCs). This study aimed to evaluate the feasibility of umbilical cord blood (UCB) collection, extraction of UCBCs, and subsequent safety of intravenous autologous administration of UCBCs in extremely preterm infants (born <28 weeks gestation).

Methods: A single-centre, open-label, single-arm, safety and feasibility clinical intervention trial was conducted at Monash Medical Centre and Monash Children's Hospital, Melbourne, Australia.

View Article and Find Full Text PDF

Umbilical cord blood (UCB) is a rich source of beneficial stem and progenitor cells with known angiogenic, neuroregenerative and immune-modulatory properties. Preclinical studies have highlighted the benefit of UCB for a broad range of conditions including haematological conditions, metabolic disorders and neurological conditions, however clinical translation of UCB therapies is lacking. One barrier for clinical translation is inadequate cell numbers in some samples meaning that often a therapeutic dose cannot be achieved.

View Article and Find Full Text PDF

Introduction: Lung injuries, such as bronchopulmonary dysplasia (BPD), remain a major complication of preterm birth, with limited therapeutic options. One potential emerging therapy is umbilical cord blood (UCB)-derived therapy.

Objectives: To systematically assess the safety and efficacy of UCB-derived therapy for preterm lung injury in preclinical and clinical studies.

View Article and Find Full Text PDF

Background: Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury.

View Article and Find Full Text PDF

Importance: Studies suggest that early neurodevelopmental assessments are beneficial for identifying cerebral palsy, yet their effectiveness in practical scenarios and their ability to detect cognitive impairment are limited.

Objective: To assess the effectiveness of early neurodevelopmental assessments in identifying cerebral palsy and cognitive and other neurodevelopmental impairments, including their severity, within a multidisciplinary clinic.

Design, Setting, And Participants: This diagnostic study was conducted at Monash Children's Hospital, Melbourne, Australia.

View Article and Find Full Text PDF

Blood-brain barrier (BBB) dysfunction and neuroinflammation are key mechanisms of brain injury. We performed a time-course study following neonatal hypoxia-ischemia (HI) to characterize these events. HI brain injury was induced in postnatal day 10 rats by single carotid artery ligation followed by hypoxia (8% oxygen, 90 min).

View Article and Find Full Text PDF

(1) Background: Neonatal brain injury can lead to permanent neurodevelopmental impairments. Notably, suppressing inflammatory pathways may reduce damage. To determine the role of neuroinflammation in the progression of neonatal brain injury, we investigated the effect of treating neonatal rat pups with the immunosuppressant tacrolimus at two time points: before and after hypoxic-ischaemic (HI)-induced injury.

View Article and Find Full Text PDF

Cell based therapies are being assessed for their therapeutic potential across a variety of diseases. Gestational tissues are attractive sources for cell therapy. The large number of births worldwide ensures sufficient access to gestational tissues, however, limited information has been reported around the impact of birth trends, delivery methods and pregnancy conditions on perinatal stem cell banking.

View Article and Find Full Text PDF

Background: Neonatal cell therapy applications are increasing; however, data on allogeneic cell therapy are limited.

Objective: To summarize evidence on allogeneic cell therapy in term and preterm neonates.

Methods: Cochrane Central Register of Controlled Trials, Embase, Ovid Medline, and various registries were searched for studies investigating the safety, feasibility, and efficacy of allogeneic cell therapy in neonates.

View Article and Find Full Text PDF

Despite considerable advances, there is a need to improve the outcomes of newborn infants, especially related to prematurity, encephalopathy and other conditions. In principle, cell therapies have the potential to protect, repair, or sometimes regenerate vital tissues; and improve or sustain organ function. In this review, we present highlights from the First Neonatal Cell Therapies Symposium (2022).

View Article and Find Full Text PDF

Background: The Medicare Current Beneficiary Survey (MCBS) limited-access data provides the unique opportunity to utilize administrative claims and adjusted survey data to investigate trends in utilization and medical expenditure across time. The adjusted survey data is a synthesized, matched version of the original survey data and claims. Researchers may choose adjusted survey data or original claims for cost evaluations according to their research purpose.

View Article and Find Full Text PDF

Perinatal brain injury is a major contributor to long-term adverse neurodevelopment. There is mounting preclinical evidence for use of umbilical cord blood (UCB)-derived cell therapy as potential treatment. To systematically review and analyse effects of UCB-derived cell therapy on brain outcomes in preclinical models of perinatal brain injury.

View Article and Find Full Text PDF

Introduction: We have previously described preclinical literature which supports umbilical cord blood-derived cell (UCBC) therapy as an efficacious treatment for perinatal brain injury. However, efficacy of UCBCs may be influenced by different patient population and intervention characteristics.

Objectives: To systematically review the effects of UCBCs on brain outcomes in animal models of perinatal brain injury across subgroups to better understand the contribution of model type (preterm versus term), brain injury type, UCB cell type, route of administration, timing of intervention, cell dosage, and number of doses.

View Article and Find Full Text PDF

Background: Fetal growth restriction (FGR) is associated with deficits in the developing brain, including neurovascular unit (NVU) dysfunction. Endothelial colony forming cells (ECFC) can mediate improved vascular stability, and have demonstrated potential to enhance vascular development and protection. This investigation examined whether ECFCs from human umbilical cord blood (UCB) enhanced NVU development in FGR and appropriate for gestational age (AGA) fetal sheep.

View Article and Find Full Text PDF

Background Aims: Umbilical cord blood (UCB)-derived cells show strong promise as a treatment for neonatal brain injury in pre-clinical models and early-phase clinical trials. Feasibility of UCB collection and autologous administration is reported for term infants, but data are limited for preterm infants. Here the authors assessed the feasibility of UCB-derived cell collection for autologous use in extremely preterm infants born at less than 28 weeks, a population with a high incidence of brain injury and subsequent neurodisability.

View Article and Find Full Text PDF

Background: Neural stem cells (NSCs) have the potential to engraft and replace damaged brain tissue, repairing the damaged neonatal brain that causes cerebral palsy (CP). There are procedures that could increase engraftment of NSCs and may be critical for efficacy, but hold notable risks. Before clinical trials progress, it is important to engage with the CP community to understand their opinions.

View Article and Find Full Text PDF

Objective: Seizures are more common in the neonatal period than at any other stage of life. Phenobarbital is the first-line treatment for neonatal seizures and is at best effective in approximately 50% of babies, but may contribute to neuronal injury. Here, we assessed the efficacy of phenobarbital versus the synthetic neurosteroid, ganaxolone, to moderate seizure activity and neuropathology in neonatal lambs exposed to perinatal asphyxia.

View Article and Find Full Text PDF

Initiation of respiratory support in the delivery room increases the risk and severity of brain injury in preterm neonates through two major pathways: an inflammatory pathway and a haemodynamic pathway. The relative contribution of each pathway on preterm brain injury is not known. We aimed to assess the role of the inflammatory and haemodynamic pathway on ventilation-induced brain injury (VIBI) in the preterm lamb.

View Article and Find Full Text PDF

Cell therapies are an emerging focus for neonatal research, with benefits documented for neonatal respiratory, neurological, and cardiac conditions in pre-clinical studies. Umbilical cord blood (UCB) and umbilical cord (UC) tissue-derived cell therapy is particularly appealing for preventative or regenerative treatment of neonatal morbidities; they are a resource that can be collected at birth and used as an autologous or allogeneic therapy. Moreover, UCB contains a diverse mix of stem and progenitor cells that demonstrate paracrine actions to mitigate damaging inflammatory, immune, oxidative stress, and cell death pathways in several organ systems.

View Article and Find Full Text PDF

The use of CD34 + cell-based therapies has largely been focused on haematological conditions. However, there is increasing evidence that umbilical cord blood (UCB) CD34 + -derived cells have neuroregenerative properties. Due to low cell numbers of CD34 + cells present in UCB, expansion is required to produce sufficient cells for therapeutic purposes, especially in adults or when frequent applications are required.

View Article and Find Full Text PDF

Perinatal brain injury can lead to significant neurological and cognitive deficits and currently no therapies can regenerate the damaged brain. Neural stem cells (NSCs) have the potential to engraft and regenerate damaged brain tissue. The aim of this systematic review was to evaluate the preclinical literature to determine whether NSC administration is more effective than controls in decreasing perinatal brain injury.

View Article and Find Full Text PDF

Preclinical and clinical studies have shown that sex is a significant risk factor for perinatal morbidity and mortality, with males being more susceptible to neonatal hypoxic ischemic (HI) brain injury. No study has investigated sexual dimorphism in the efficacy of umbilical cord blood (UCB) cell therapy. HI injury was induced in postnatal day 10 (PND10) rat pups using the Rice-Vannucci method of carotid artery ligation.

View Article and Find Full Text PDF

Objectives: Older adults are commonly affected by cancer and diabetes, and an investigation of the economic burden faced by these older adults remains a research gap. Therefore, the objective was to assess the economic burden of diabetes among Medicare beneficiaries with cancer by analyzing annual costs from administrative claims data.

Methods: We conducted a retrospective, serial cross-sectional study using the Medicare Current Beneficiary Survey (MCBS) from 2006 to 2012.

View Article and Find Full Text PDF