Here we report how reactions at a chemically reactive diphosphine shift the long-lived luminescent colour of a crystalline three-coordinate Cu(i) complex from green to blue. The results demonstrate how vapochromism and single-crystal-to-single-crystal transformations can be achieved using ligand-centered reactions.
View Article and Find Full Text PDFThe continued development of redox-active ligands requires an understanding as to how ligand modifications and related factors affect the locus of redox activity and spin density in metal complexes. Here we describe the synthesis, characterization, and electronic structure of nickel complexes containing triaryl NNNN () and SNNS () ligands derived from -phenylenediamine. The tetradentate ligands in and were investigated and compared to those in metal complexes with compositionally similar ligands to determine how ligand-centered redox properties change when redox-active flanking groups are replaced with redox-innocent NMe or SMe.
View Article and Find Full Text PDFBond distance is a common structural metric used to assess changes in metal-ligand bonds, but it is not clear how sensitive changes in bond distances are with respect to changes in metal-ligand covalency. Here we report ligand K-edge XAS studies on Ni and Pd complexes containing different phosphorus(III) ligands. Despite the large number of electronic and structural permutations, P K-edge pre-edge peak intensities reveal a remarkable correlation that spectroscopically quantifies the linear interdependence of covalent M-P σ bonding and bond distance.
View Article and Find Full Text PDFConstraining σ -P compounds in nontrigonal, entatic geometries has proven to be an effective strategy for promoting biphilic oxidative addition reactions more typical of transition metals. Although qualitative descriptions of the impact of structure and symmetry on σ -P complexes have been proposed, electronic structure variations responsible for biphilic reactivity have yet to be elucidated experimentally. Reported here are P K-edge XANES data and complementary TDDFT calculations for a series of structurally modified P(N) complexes that both validate and quantify electronic structure variations proposed to give rise to biphilic reactions at phosphorus.
View Article and Find Full Text PDFDiphosphines are highly versatile ancillary ligands in coordination chemistry and catalysis because their structures and donor-acceptor properties can vary widely depending on the substituents attached to phosphorus. Experimental and theoretical methods have been developed to quantify differences in phosphine and diphosphine ligand field strength, but experimentally measuring individual σ-donor and π-acceptor contributions to metal-phosphorus bonding remains a formidable challenge. Here we report P and Cl K-edge X-ray absorption spectroscopy (XAS), density functional theory (DFT), and time-dependent density functional theory (TDDFT) studies of a series of [PhP(CH) PPh]TiCl complexes, where n = 1, 2, or 3.
View Article and Find Full Text PDFP K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (CsCuCl) and S (NaSO·5HO), but not neighboring P.
View Article and Find Full Text PDFThe synthesis, coordination chemistry, and reactivity of two diphosphines containing the cyclic triaminoborane 1,8,10,9-triazaboradecalin (TBD) are described. To evaluate the ligand-centered reactivity of TBDPhos and TBDPhos, the complexes (TBDPhos)MCl and (TBDPhos)MCl, where M = Ni and Pd, were prepared and characterized by elemental analysis, multinuclear NMR spectroscopy (H, C, P, and B), and single-crystal X-ray diffraction (XRD). Despite very low boron Lewis acidity in the TBD backbone, (TBDPhos)NiCl (1) and (TBDPhos)PdCl (3) react with HO, alcohols, and hydrated fluoride reagents in the presence of NEt to yield trans H-O or H-F addition across the bridgehead N-B bond.
View Article and Find Full Text PDFCorrection for 'Ligand K-edge XAS, DFT, and TDDFT analysis of pincer linker variations in Rh(i) PNP complexes: reactivity insights from electronic structure' by Jason M. Keith, Scott R. Daly, et al.
View Article and Find Full Text PDFHere we report P K-edge, Cl K-edge, and Rh L3-edge X-ray absorption spectroscopy (XAS) data for Rh[C5H3N-2,6-(XP(t)Bu2)2]Cl, where X = O ((tBu)PONOP; ) or CH2 ((tBu)PNP; ). Solid-state XAS data for and were compared to density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations to identify how changing the PNP pincer linker from O to CH2 affected electronic structure and bonding at Rh(i). Pronounced differences in XAS peak intensities and energies were observed.
View Article and Find Full Text PDFDespite the long-standing use of phosphine and diphosphine ligands in coordination chemistry and catalysis, questions remain as to their effects on metal-ligand bonding in transition metal complexes. Here we report ligand K-edge XAS, DFT, and TDDFT studies aimed at quantifying the impact of coordination geometry, diphosphine bite angle, and phosphine trans influence on covalency in M-P and M-Cl bonds. A series of four-coordinate NiCl2 and PdCl2 complexes containing PPh3 or Ph2P(CH2)nPPh2, where n = 1 (dppm), 2 (dppe), 3 (dppp), and 4 (dppb), was analyzed.
View Article and Find Full Text PDFS K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT) calculations were performed on a series of As[S2CNR2]3 complexes, where R2 = Et2, (CH2)5 and Ph2, to determine how dithiocarbamate substituents attached to N affect As[S2CNR2]3 electronic structure. Complimentary [PPh4][S2CNR2] salts were also studied to compare dithiocarbamate bonding in the absence of As. The XAS results indicate that changing the orientation of the alkyl substituents from trans to cis (R2 = Et2vs.
View Article and Find Full Text PDF