Autocrine VEGF is necessary for endothelial survival, although the cellular mechanisms supporting this function are unknown. Here, we show that--even after full differentiation and maturation--continuous expression of VEGF by endothelial cells is needed to sustain vascular integrity and cellular viability. Depletion of VEGF from the endothelium results in mitochondria fragmentation and suppression of glucose metabolism, leading to increased autophagy that contributes to cell death.
View Article and Find Full Text PDFThe distribution and patterning of blood vessels is controlled by vascular endothelial growth factor (VEGF), which is precisely regulated throughout its life cycle. Okabe et al. show that VEGF is titrated away from the endothelium by adjacent neurons via endocytosis, regulating density and trajectory of blood vessels.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2015
The past 5 years have witnessed a significant expansion in our understanding of vascular endothelial growth factor (VEGF) signaling. In particular, the process of canonical activation of VEGF receptor tyrosine kinases by homodimeric VEGF molecules has now been broadened by the realization that heterodimeric ligands and receptors are also active participants in the signaling process. Although heterodimer receptors were described 2 decades ago, their impact, along with the effect of additional cell surface partners and novel autocrine VEGF signaling pathways, are only now starting to be clarified.
View Article and Find Full Text PDFVascular permeability is frequently associated with inflammation and is triggered by a cohort of secreted permeability factors such as vascular endothelial growth factor (VEGF). Here, we show that the physiological vascular permeability that precedes implantation is directly controlled by progesterone receptor (PR) and is independent of VEGF. Global or endothelial-specific deletion of PR blocks physiological vascular permeability in the uterus, whereas misexpression of PR in the endothelium of other organs results in ectopic vascular leakage.
View Article and Find Full Text PDFPurpose Of Review: This review offers a concise summary of the most recent experimental advances in vascular development using the mouse as a model organism.
Recent Findings: Recent mouse studies have revealed a spread of phenotypic diversity between endothelia of distinct developmental origins and organs. For example, expression of unique transcription factors distinguishes hemogenic from nonhemogenic endothelium within the same vessel.