Publications by authors named "Courtney Hanna"

The placental DNA methylation landscape is unique, with widespread partially methylated domains (PMDs). The placental "methylome" is conserved across mammals, a shared feature of many cancers, and extensively studied for links with pregnancy complications. Human trophoblast stem cells (hTSCs) offer exciting potential for functional studies to better understand this epigenetic feature; however, whether the hTSC epigenome recapitulates primary trophoblast remains unclear.

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Extraembryonic tissues have pivotal roles in morphogenesis and patterning of the early mammalian embryo. Developmental programmes mediated through signalling pathways and gene regulatory networks determine the sequence in which fate determination and lineage commitment of extraembryonic tissues take place, and epigenetic processes allow the memory of cell identity and state to be sustained throughout and beyond embryo development, even extending across generations. In this Review, we discuss the molecular and cellular mechanisms necessary for the different extraembryonic tissues to develop and function, from their initial specification up until the end of gastrulation, when the body plan of the embryo and the anatomical organization of its supporting extraembryonic structures are established.

View Article and Find Full Text PDF

DNA methylation is a repressive epigenetic modification that is essential for development and its disruption is widely implicated in disease. Yet, remarkably, ablation of DNA methylation in transgenic mouse models has limited impact on transcriptional states. Across multiple tissues and developmental contexts, the predominant transcriptional signature upon loss of DNA methylation is the de-repression of a subset of germline genes, normally expressed in gametogenesis.

View Article and Find Full Text PDF

The earliest macrophages are generated during embryonic development from erythro-myeloid progenitors (EMPs) via primitive haematopoiesis. Although this process is thought to be spatially restricted to the yolk sac in the mouse, in humans, it remains poorly understood. Human foetal placental macrophages, or Hofbauer cells (HBC), arise during the primitive haematopoietic wave ~18 days post conception and lack expression of human leukocyte antigen (HLA) class II.

View Article and Find Full Text PDF

DNA methylation is a repressive epigenetic modification that is essential for development, exemplified by the embryonic and perinatal lethality observed in mice lacking de novo DNA methyltransferases (DNMTs). Here we characterise the role for DNMT3A, 3B and 3L in gene regulation and development of the mouse placenta. We find that each DNMT establishes unique aspects of the placental methylome through targeting to distinct chromatin features.

View Article and Find Full Text PDF

EHMT1 (also known as GLP) is a multifunctional protein, best known for its role as an H3K9me1 and H3K9me2 methyltransferase through its reportedly obligatory dimerization with EHMT2 (also known as G9A). Here, we investigated the role of EHMT1 in the oocyte in comparison to EHMT2 using oocyte-specific conditional knockout mouse models ( cKO, cKO, cDKO), with ablation from the early phase of oocyte growth. Loss of EHMT1 in cKO and cDKO oocytes recapitulated meiotic defects observed in the cKO; however, there was a significant impairment in oocyte maturation and developmental competence in cKO and cDKO oocytes beyond that observed in the cKO.

View Article and Find Full Text PDF

Histone 3 lysine 4 trimethylation (H3K4me3) is an epigenetic mark found at gene promoters and CpG islands. H3K4me3 is essential for mammalian development, yet mechanisms underlying its genomic targeting are poorly understood. H3K4me3 methyltransferases SETD1B and MLL2 (KMT2B) are essential for oogenesis.

View Article and Find Full Text PDF

Stability of the epigenetic landscape underpins maintenance of the cell-type-specific transcriptional profile. As one of the main repressive epigenetic systems, DNA methylation has been shown to be important for long-term gene silencing; its loss leads to ectopic and aberrant transcription in differentiated cells and cancer. The developing mouse germ line endures global changes in DNA methylation in the absence of widespread transcriptional activation.

View Article and Find Full Text PDF

Genomic imprinting is the monoallelic expression of a gene based on parent of origin and is a consequence of differential epigenetic marking between the male and female germlines. Canonically, genomic imprinting is mediated by allelic DNA methylation. However, recently it has been shown that maternal H3K27me3 can result in DNA methylation-independent imprinting, termed "noncanonical imprinting.

View Article and Find Full Text PDF

Advancing maternal age causes a progressive reduction in fertility. The decline in developmental competence of the oocyte with age is likely to be a consequence of multiple contributory factors. Loss of epigenetic quality of the oocyte could impair early developmental events or programme adverse outcomes in offspring that manifest only later in life.

View Article and Find Full Text PDF

As the maternal-foetal interface, the placenta is essential for the establishment and progression of healthy pregnancy, regulating both foetal growth and maternal adaptation to pregnancy. The evolution and functional importance of genomic imprinting are inextricably linked to mammalian placentation. Recent technological advances in mapping and manipulating the epigenome in embryogenesis in mouse models have revealed novel mechanisms regulating genomic imprinting in placental trophoblast, the physiological implications of which are only just beginning to be explored.

View Article and Find Full Text PDF

Formation of the three primary germ layers during gastrulation is an essential step in the establishment of the vertebrate body plan and is associated with major transcriptional changes. Global epigenetic reprogramming accompanies these changes, but the role of the epigenome in regulating early cell-fate choice remains unresolved, and the coordination between different molecular layers is unclear. Here we describe a single-cell multi-omics map of chromatin accessibility, DNA methylation and RNA expression during the onset of gastrulation in mouse embryos.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic imprinting is an epigenetic process where genes are expressed based on the parent from whom they are inherited, influenced by DNA methylation.
  • This study explores imprinted regions in mouse embryos and distinguishes between canonical and non-canonical imprinting, with non-canonical imprinting linked to endogenous retrovirus-K (ERVK) long terminal repeats.
  • Findings indicate that while non-canonical imprinting relies on H3K27me3 from the oocyte, this modification is replaced by DNA methylation after implantation, highlighting different epigenetic regulation in embryonic versus extra-embryonic tissues.
View Article and Find Full Text PDF

The importance of the placenta in supporting mammalian development has long been recognized, but our knowledge of the molecular, genetic and epigenetic requirements that underpin normal placentation has remained remarkably under-appreciated. Both the in vivo mouse model and in vitro-derived murine trophoblast stem cells have been invaluable research tools for gaining insights into these aspects of placental development and function, with recent studies starting to reshape our view of how a unique epigenetic environment contributes to trophoblast differentiation and placenta formation. These advances, together with recent successes in deriving human trophoblast stem cells, open up new and exciting prospects in basic and clinical settings that will help deepen our understanding of placental development and associated disorders of pregnancy.

View Article and Find Full Text PDF

DNA methyltransferases (DNMTs) deposit DNA methylation, which regulates gene expression and is essential for mammalian development. Histone post-translational modifications modulate the recruitment and activity of DNMTs. The PWWP domains of DNMT3A and DNMT3B are posited to interact with histone 3 lysine 36 trimethylation (H3K36me3); however, the functionality of this interaction for DNMT3A remains untested in vivo.

View Article and Find Full Text PDF

Background: Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modifications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human, the implications of which are only beginning to be explored.

Objective And Rationale: In this review, we summarise new low-cell molecular methods enabling the interrogation of epigenetic information in gametes and early embryos, the mechanistic insights these have provided, and contrast the findings in mouse and human.

View Article and Find Full Text PDF

Dermoscopy is well established as a tool to improve the detection of cancerous skin growths. Published data suggest that dermoscopy might be useful in evaluating inflammatory dermatoses and in distinguishing between rashes and skin cancer. The authors sought to review the published literature regarding use of dermoscopy in the evaluation of inflammatory skin conditions.

View Article and Find Full Text PDF

Background: 5,10-Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in one-carbon metabolism that ensures the availability of methyl groups for methylation reactions. Two single-nucleotide polymorphisms (SNPs) in the gene, 677C>T and 1298A>C, result in a thermolabile enzyme with reduced function. These variants, in both the maternal and/or fetal genes, have been associated with pregnancy complications including miscarriage, neural tube defects (NTDs), and preeclampsia (PE), perhaps due to altered capacity for DNA methylation (DNAm).

View Article and Find Full Text PDF

Dermoscopy, commonly used to analyze skin tumors, has more recently been used to evaluate inflammatory dermatoses. We performed a systematic review of the literature to assess the role of dermoscopy in evaluating psoriasis, and briefly reviewed the findings with an emphasis on the specificity or sensitivity of the dermoscopic findings of psoriasis. We also describe the case of a 63-year-old man with a history of psoriasis and basal cell carcinoma (BCC) who presented with a new scaly pink patch on the back.

View Article and Find Full Text PDF
Article Synopsis
  • Histone 3 K4 trimethylation (H3K4me3) is usually linked to active gene promoters but also appears in regions that aren't actively transcribed, making its regulation a subject of ongoing research.
  • The study used low-input chromatin immunoprecipitation techniques during oocyte development to analyze H3K4me3 formation, revealing that it initially targets active promoters but later also appears in intergenic regions and other genomic areas independent of transcription.
  • The research identified two mechanisms for H3K4me3 targeting: one involves the MLL2 methyltransferase being active in unmethylated regions of DNA, while DNA methylation itself prevents certain areas from acquiring this modification, indicating a complex regulation
View Article and Find Full Text PDF

Inheritance of DNA methylation states from gametes determines genomic imprinting in mammals. A new study shows that repressive chromatin in oocytes can also confer imprinting.

View Article and Find Full Text PDF

Background: Facial aging is a concern for many patients. Wrinkles, loss of volume, and discoloration are common physical manifestations of aging skin. Genetic heritage, prior ultraviolet light exposure, and Fitzpatrick skin type may be associated with the rate and type of facial aging.

View Article and Find Full Text PDF

Purpose: To determine whether an advance care planning (ACP) decision-aid could improve communication about end-of-life treatment wishes between patients with amyotrophic lateral sclerosis (ALS) and their clinicians.

Methods: Forty-four patients with ALS (>21, English-speaking, without dementia) engaged in ACP using an interactive computer based decision-aid. Before participants completed the intervention, and again three months later, their clinicians reviewed three clinical vignettes, and made treatment decisions (n = 18) for patients.

View Article and Find Full Text PDF

Unlabelled: Psychological challenges, including traumatic events, have been hypothesized to increase the age-related pace of biological aging. Here we test the hypothesis that psychological challenges can affect the pace of telomere attrition, a marker of cellular aging, using data from an ongoing longitudinal-cohort study of Kaqchikel Mayan women living in a population with a high frequency of child mortality, a traumatic life event. Specifically, we evaluate the associations between child mortality, maternal telomere length and the mothers' hypothalamic-pituitary-adrenal axis (HPAA), or stress axis, activity.

View Article and Find Full Text PDF