While the World Health Organization has declared the end of the SARS-CoV-2 public health emergency, studies related to corona viruses are still under course. As of 2024, the severity of COVID-19 has diminished with current treatments and vaccinations. However, individuals can still face severe complications, highlighting the importance of ongoing research into innovative treatments for current and future coronavirus-related diseases.
View Article and Find Full Text PDFRegeneration in the injured spinal cord is limited by physical and chemical barriers. Acute implantation of a multichannel poly(lactide-co-glycolide) (PLG) bridge mechanically stabilizes the injury, modulates inflammation, and provides a permissive environment for rapid cellularization and robust axonal regrowth through this otherwise inhibitory milieu. However, without additional intervention, regenerated axons remain largely unmyelinated (<10%), limiting functional repair.
View Article and Find Full Text PDFRegeneration in the injured spinal cord is limited by physical and chemical barriers. Acute implantation of a multichannel poly(lactide-co-glycolide) (PLG) bridge mechanically stabilizes the injury, modulates inflammation, and provides a permissive environment for rapid cellularization and robust axonal regrowth through this otherwise inhibitory milieu. However, without additional intervention, regenerated axons remain largely unmyelinated (<10%), limiting functional repair.
View Article and Find Full Text PDFDrug delivery requires precision in timing, location, and dosage to achieve therapeutic benefits. Challenges in addressing all three of these critical criteria result in poor temporal dexterity, widespread accumulation and off-target effects, and high doses with the potential for toxicity. To address these challenges, we have developed the BiomatErial Accumulating Carriers for On-demand Nanotherapy (BEACON) platform that utilizes an implantable biomaterial to serve as a target for systemically delivered nanoparticles (NPs).
View Article and Find Full Text PDFStem cell therapies have the potential to not only repair, but to regenerate tissue of the central nervous system (CNS). Recent studies demonstrate that transplanted stem cells can differentiate into neurons and integrate with the intact circuitry after traumatic injury. Unfortunately, the positive findings described in rodent models have not been replicated in clinical trials, where the burden to maintain the cell viability necessary for tissue repair becomes more challenging.
View Article and Find Full Text PDFA complex cellular cascade characterizes the pathophysiological response following spinal cord injury (SCI) limiting regeneration. Biomaterial and stem cell combination therapies together have shown synergistic effects, compared to the independent benefits of each intervention, and represent a promising approach towards regaining function after injury. In this study, we combine our polyethylene glycol (PEG) cell delivery platform with lentiviral-mediated overexpression of the anti-inflammatory cytokine interleukin (IL)-10 to improve mouse embryonic Day 14 (E14) spinal progenitor transplant survival.
View Article and Find Full Text PDFThere is an increasing need to develop improved and non-invasive strategies to treat spinal cord injury (SCI). Nanoparticles (NPs) are an enabling technology to improve drug delivery, modulate inflammatory responses, and restore functional responses following SCI. However, the complex pathophysiology associated with SCI presents several distinct challenges that must be overcome for sufficient NP drug delivery to the spinal cord.
View Article and Find Full Text PDFAn important role of neural stem cell transplantation is repopulating neural and glial cells that actively promote repair following spinal cord injury (SCI). However, stem cell survival after transplantation is severely hampered by the inflammatory environment that arises after SCI. Biomaterials have a demonstrated history of managing post-SCI inflammation and can serve as a vehicle for stem cell delivery.
View Article and Find Full Text PDFScaffolds made from biocompatible polymers provide physical cues to direct the extension of neurites and to encourage repair of damaged nerves. The inclusion of neurotrophic payloads in these scaffolds can substantially enhance regrowth and repair processes. However, many promising neurotrophic candidates are excluded from this approach due to incompatibilities with the polymer or with the polymer processing conditions.
View Article and Find Full Text PDFObjectives/hypothesis: Facial nerve injury is a source of major morbidity. This study investigated the neuroregenerative effects of inducing an anti-inflammatory environment when reconstructing a facial nerve defect with a multichannel bridge containing interleukin-4 (IL-4)-encoding lentivirus.
Study Design: Animal study.
One million estimated cases of spinal cord injury (SCI) have been reported in the United States and repairing an injury has constituted a difficult clinical challenge. The complex, dynamic, inhibitory microenvironment postinjury, which is characterized by proinflammatory signaling from invading leukocytes and lack of sufficient factors that promote axonal survival and elongation, limits regeneration. Herein, we investigated the delivery of polycistronic vectors, which have the potential to coexpress factors that target distinct barriers to regeneration, from a multiple channel poly(lactide--glycolide) (PLG) bridge to enhance spinal cord regeneration.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a devastating condition that may cause permanent functional loss below the level of injury, including paralysis and loss of bladder, bowel, and sexual function. Patients are rarely treated immediately, and this delay is associated with tissue loss and scar formation that can make regeneration at chronic time points more challenging. Herein, we investigated regeneration using a poly(lactide--glycolide) multichannel bridge implanted into a chronic SCI following surgical resection of necrotic tissue.
View Article and Find Full Text PDFElectrical stimulation (ES) to manipulate the central (CNS) and peripheral nervous system (PNS) has been explored for decades, recently gaining momentum as bioelectronic medicine advances. The application of ES in vitro to modulate a variety of cellular functions, including regenerative potential, migration, and stem cell fate, are being explored to aid neural degeneration, dysfunction, and injury. This review describes the materials and approaches for the application of ES to the PNS and CNS microenvironments, towards an improved understanding of how ES can be harnessed for beneficial clinical applications.
View Article and Find Full Text PDFDirecting the organization of cells into a tissue with defined architectures is one use of biomaterials for regenerative medicine. To this end, hydrogels are widely investigated as they have mechanical properties similar to native soft tissues and can be formed in situ to conform to a defect. Herein, we describe the development of porous hydrogel tubes fabricated through a two-step polymerization process with an intermediate microsphere phase that provides macroscale porosity (66.
View Article and Find Full Text PDFSpinal cord injury (SCI) results in paralysis below the injury and strategies are being developed that support axonal regrowth, yet recovery lags, in part, because many axons are not remyelinated. Herein, we investigated strategies to increase myelination of regenerating axons by overexpression of platelet-derived growth factor (PDGF)-AA and noggin either alone or in combination in a mouse SCI model. Noggin and PDGF-AA have been identified as factors that enhance recruitment and differentiation of endogenous progenitors to promote myelination.
View Article and Find Full Text PDFSpinal cord injury (SCI) results in loss of tissue innervation below the injury. Spinal progenitors have a greater ability to repair the damage and can be injected into the injury, but their regenerative potential is hampered by their poor survival after transplantation. Biomaterials can create a cell delivery platform and generate a more hospitable microenvironment for the progenitors within the injury.
View Article and Find Full Text PDFSpinal cord injury (SCI) causes permanent paralysis below the damaged area. SCI is linked to neuronal death, demyelination, and limited ability of neuronal fibers to regenerate. Regeneration capacity is limited by the presence of many inhibitory factors in the spinal cord environment.
View Article and Find Full Text PDFThe microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures.
View Article and Find Full Text PDFTissue engineering strategies have shown promise in promoting healing and regeneration after spinal cord injury (SCI); however, these strategies are limited by inflammation and the immune response. Infiltration of cells of the innate and adaptive immune responses and the inflammation that follows cause secondary damage adjacent to the injury, increased scarring, and a potently inhibitory environment for the regeneration of damaged neurons. While the inflammation that ensues is typically associated with limited regeneration, the immune response is a crucial element in the closing of the blood-brain barrier, minimizing the spread of injury, and initiating healing.
View Article and Find Full Text PDFAdvances in the field of tissue engineering have enhanced the potential of regenerative medicine, yet the efficacy of these strategies remains incomplete, and is limited by the innate and adaptive immune responses. The immune response associated with injury or disease combined with that mounted to biomaterials, transplanted cells, proteins, and gene therapies vectors can contribute to the inability to fully restore tissue function. Blocking immune responses such as with anti-inflammatory or immunosuppressive agents are either ineffective, as the immune response contributes significantly to regeneration, or have significant side effects.
View Article and Find Full Text PDFDesigning an ideal biomaterial supportive of multicellular tissue repair is challenging, especially with a poor understanding of the synergy between constituent proteins and growth factors. A brute-force approach, based on screening all possible combinations of proteins and growth factors, is inadequate due to the prohibitively large experimental space coupled with current low-throughput screening techniques. A high-throughput screening platform based on rational and combinatorial strategies for design and testing of proteins and growth factors can significantly impact the discovery of novel tissue-specific biomaterials.
View Article and Find Full Text PDF