Publications by authors named "Courtney Cates"

Clinical and basic science applications using adipose-derived stem cells (ADSCs) are gaining popularity. The current adipose tissue harvesting procedures introduce nonphysiological conditions, which may affect the overall performance of the isolated ADSCs. In this study, we elucidate the differences between ADSCs isolated from adipose tissues harvested within the first 5 min of the initial surgical incision (well-vascularized, nonpremedicated condition) versus those isolated from adipose tissues subjected to medications and deprived of blood supply during elective free flap procedures (ischemic condition).

View Article and Find Full Text PDF

The design and development of multifunctional nanoparticles have attracted great interest in biomedical research. This study aims to prepare pH-responsive melanin-like nanoparticles for -weighted magnetic resonance imaging (MRI) and photothermal therapy. The new multifunctional nanoparticles (amino-Fe-PDANPs) are synthesized by copolymerization of dopamine and its derivative amino-N-[2-(diethylamino) ethyl]-3,4-dihydroxy-benzenepropanamide (N-Dopa) at room temperature.

View Article and Find Full Text PDF

The generation of big data has enabled systems-level dissections into the mechanisms of cardiovascular pathology. Integration of genetic, proteomic, and pathophysiological variables across platforms and laboratories fosters discoveries through multidisciplinary investigations and minimizes unnecessary redundancy in research efforts. The Mouse Heart Attack Research Tool (mHART) consolidates a large data set of over 10 yr of experiments from a single laboratory for cardiovascular investigators to generate novel hypotheses and identify new predictive markers of progressive left ventricular remodeling after myocardial infarction (MI) in mice.

View Article and Find Full Text PDF

Background: AMP-activated Protein Kinase (AMPK) is a stress-activated kinase that protects against cardiomyocyte injury during ischemia and reperfusion. c-Jun N-terminal kinase (JNK), a mitogen activated protein kinase, is activated by ischemia and reperfusion. NF-κB is an important transcription factor involved in ischemia and reperfusion injury.

View Article and Find Full Text PDF

Aims: A longevity gene, Sirtuin 1 (SIRT1) and energy sensor AMP-activated protein kinase (AMPK) have common activators such as caloric restriction, oxidative stress, and exercise. The objective of this study is to characterize the role of cardiomyocyte SIRT1 in age-related impaired ischemic AMPK activation and increased susceptibility to ischemic insults.

Methods And Results: Mice were subjected to ligation of left anterior descending coronary artery for in vivo ischemic models.

View Article and Find Full Text PDF

We have revealed that a novel stress-inducible protein, Sestrin2, declines in the heart with aging. Moreover, there is an interaction between Sestrin2 and energy sensor AMPK in the heart in response to ischemic stress. The objective of this study is to determine whether Sestrin2-AMPK complex modulates PGC-1α in the heart and protects the heart from ischemic insults.

View Article and Find Full Text PDF

We found that the anticoagulant plasma protease, activated protein C (APC), stimulates the energy sensor kinase, AMPK, in the stressed heart by activating protease-activated receptor 1 (PAR1) on cardiomyocytes. Wild-type (WT) and AMPK-kinase dead (KD) transgenic mice were subjected to transverse aortic constriction (TAC) surgery. The results demonstrated that while no phenotypic differences can be observed between WT and AMPK-KD mice under normal physiological conditions, AMPK-KD mice exhibit significantly larger hearts after 4 weeks of TAC surgery.

View Article and Find Full Text PDF

Ginsenosides have been studied extensively in recent years due to their therapeutic effects in cardiovascular diseases. While most studies examined the different ginsenosides individually, few studies compare the therapeutic effects among the different types. This study examined how effective protopanaxadiol, protopanaxatriol ginsenosides Rh2, Rg3, Rh1, and Rg2 of the ginsenoside family are in protecting H9c2 cardiomyocytes from damage caused by hypoxia/reoxygenation.

View Article and Find Full Text PDF

We aim to investigate the cardioprotective effects of L-carnitine (LC) on cardiac function during ischemia and reperfusion (I/R) and contractile function of single cardiomyocyte. C57BL/6 J mice were randomly assigned to 5 groups: sham group; vehicle group, LC preconditioning group, LC preconditioning + LY294002 (a PI3K/Akt signaling pathway inhibitor) group (LC + LY), and LY294002 group (LY). The sham group was exposed to the open heart operation but not I/R, the other groups received 45 min ischemia/48 h reperfusion.

View Article and Find Full Text PDF

Chronic inflammatory diseases, such as periodontal disease, associate with adverse wound healing in response to myocardial infarction (MI). The goal of this study was to elucidate the molecular basis for impaired cardiac wound healing in the setting of periodontal-induced chronic inflammation. Causal network analysis of 168 inflammatory and extracellular matrix genes revealed that chronic inflammation induced by a subseptic dose of Porphyromonas gingivalis lipopolysaccharide (LPS) exacerbated infarct expression of the proinflammatory cytokine Ccl12.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK), an enzyme that plays a role in cellular energy homeostasis, modulates myocardial signaling in the heart. Myocardial dysfunction is a common complication of sepsis. Autophagy is involved in the aging related cardiac dysfunction.

View Article and Find Full Text PDF

A novel stress-inducible protein, Sestrin2 (Sesn2), declines in the heart with aging. AMPK has emerged as a pertinent stress-activated kinase that has been shown to have cardioprotective capabilities against myocardial ischemic injury. We identified the interaction between Sesn2 and AMPK in the ischemic heart.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) signaling pathway plays a pivotal role in intracellular adaptation to energy stress during myocardial ischemia. Notch1 signaling in the adult myocardium is also activated in response to ischemic stress. However, the relationship between Notch1 and AMPK signaling pathways during ischemia remains unclear.

View Article and Find Full Text PDF

Aims: Although macrophage phenotypes have been well studied in the myocardial infarction (MI) setting, this study investigated temporal neutrophil polarization and activation mechanisms.

Methods And Results: Neutrophils isolated from the infarcted left ventricle (LV) of mice showed high expression of proinflammatory markers at Day 1 and anti-inflammatory markers at Days 5 and 7 post-MI, indicating distinct neutrophil phenotypes along the post-MI time continuum. Flow cytometry analysis revealed that although proinflammatory N1 neutrophils were always predominant (>80% of total neutrophils at each time point), the percentage of N2 neutrophils increased post-MI from 2.

View Article and Find Full Text PDF

Background: After myocardial infarction, the left ventricle undergoes a wound healing response that includes the robust infiltration of neutrophils and macrophages to facilitate removal of dead myocytes as well as turnover of the extracellular matrix. Matrix metalloproteinase (MMP)-9 is a key enzyme that regulates post-myocardial infarction left ventricular remodeling.

Methods And Results: Infarct regions from wild-type and MMP-9 null mice (n=8 per group) analyzed by glycoproteomics showed that of 541 N-glycosylated proteins quantified, 45 proteins were at least 2-fold upregulated or downregulated with MMP-9 deletion (all P<0.

View Article and Find Full Text PDF

Purpose: Matrix metalloproteinases (MMPs) collectively degrade all extracellular matrix (ECM) proteins. Of the MMPs, MMP-9 has the strongest link to the development of cardiac dysfunction. Aging associates with increased MMP-9 expression in the left ventricle (LV) and reduced cardiac function.

View Article and Find Full Text PDF

Matrix metalloproteinase-9 (MMP-9) deletion attenuates collagen accumulation and dilation of the left ventricle (LV) post-myocardial infarction (MI); however the biomechanical mechanisms underlying the improved outcome are poorly understood. The aim of this study was to determine the mechanisms whereby MMP-9 deletion alters collagen network composition and assembly in the LV post-MI to modulate the mechanical properties of myocardial scar tissue. Adult C57BL/6J wild-type (WT; n=88) and MMP-9 null (MMP-9(-/-); n=92) mice of both sexes underwent permanent coronary artery ligation and were compared to day 0 controls (n=42).

View Article and Find Full Text PDF

Aim: To evaluate the role of matrix metalloproteinase (MMP)-9 deletion on citrate synthase (CS) activity postmyocardial infarction (MI).

Results: We fractionated left ventricle (LV) samples using a differential solubility-based approach. The insoluble protein fraction was analyzed by mass spectrometry, and we identified CS as a potential intracellular substrate of MMP-9 in the MI setting.

View Article and Find Full Text PDF