Publications by authors named "Courtney A Kelley"

Article Synopsis
  • - Spinal cord stimulation (SCS) is an effective treatment for chronic neuropathic pain, and recent advances like differential target multiplexed programming (DTMP) help in precisely targeting pain-related neural structures.
  • - In a study involving 20 animals subjected to neuropathic pain, two SCS intensity levels (70% and 40% of the motor threshold) were tested for their effects on pain sensitivity and gene expression associated with pain.
  • - Results showed SCS significantly improved mechanical hypersensitivity, and RNA sequencing revealed changes in gene expression related to pain in the dorsal spinal cord, indicating the effectiveness of DTMP in pain modulation.
View Article and Find Full Text PDF

Objectives: Rats are commonly used for translational pain and spinal cord stimulation (SCS) research. Although many SCS parameters are configured identically between rats and humans, stimulation amplitudes in rats are often programmed relative to visual motor threshold (vMT). Alternatively, amplitudes may be programmed relative to evoked compound action potential (ECAP) thresholds (ECAPTs), a sensed measure of neural activation.

View Article and Find Full Text PDF

Glial cells play an essential role in maintaining the proper functioning of the nervous system. They are more abundant than neurons in most neural tissues and provide metabolic and catabolic regulation, maintaining the homeostatic balance at the synapse. Chronic pain is generated and sustained by the disruption of glia-mediated processes in the central nervous system resulting in unbalanced neuron-glial interactions.

View Article and Find Full Text PDF

While numerous studies and patient experiences have demonstrated the efficacy of spinal cord stimulation as a treatment for chronic neuropathic pain, the exact mechanism underlying this therapy is still uncertain. Recent studies highlighting the importance of microglial cells in chronic pain and characterizing microglial activation transcriptomes have created a focus on microglia in pain research. Our group has investigated the modulation of gene expression in neurons and glial cells after spinal cord stimulation (SCS), specifically focusing on transcriptomic changes induced by varying SCS stimulation parameters.

View Article and Find Full Text PDF

Spinal cord stimulation is a proven effective therapy for treating chronic neuropathic pain. Previous work in our laboratory demonstrated that spinal cord stimulation based on a differential target multiplexed programming approach provided significant relief of pain-like behavior in rodents subjected to the spared nerve injury model of neuropathic pain. The relief was significantly better than obtained using high rate and low rate programming.

View Article and Find Full Text PDF

The development and maintenance of chronic neuropathic pain involves distorted neuroglial interactions, which result in prolonged perturbations of immune and inflammatory response, as well as disrupted synapses and cellular interactions. Spinal cord stimulation (SCS) has proven effective and safe for more than 40 years, but comprehensive understanding of its mode of action remains elusive. Previous work in our laboratory provided evidence that conventional SCS parameters modulate biological processes associated with neuropathic pain in animals.

View Article and Find Full Text PDF

Objectives: Spinal cord stimulation (SCS) provides relief for patients suffering from chronic neuropathic pain although its mechanism may not be as dependent on electrical interference as classically considered. Recent evidence has been growing regarding molecular changes that are induced by SCS as being a key player in reversing the pain process. Here, we observed the effect of SCS on altering protein expression in spinal cord tissue using a proteomic analysis approach.

View Article and Find Full Text PDF

Glial cells comprise the majority of cells in the central nervous system and exhibit diverse functions including the development of persistent neuropathic pain. While earlier theories have proposed that the applied electric field specifically affects neurons, it has been demonstrated that electrical stimulation (ES) of neural tissue modulates gene expression of the glial cells. This study examines the effect of ES on the expression of eight genes related to oxidative stress and neuroprotection in cultured rodent glioma cells.

View Article and Find Full Text PDF

Objective: To investigate the effect of phase polarity and charge balance of spinal cord stimulation (SCS) waveforms on pain behavior and gene expression in a neuropathic pain rodent model. We hypothesized that differing waveforms will result in diverse behavioral and transcriptomics expression due to unique mechanisms of action.

Materials And Methods: Rats were implanted with a four-contact cylindrical mini-lead and randomly assigned to two control (no-pain and pain model) and five test groups featuring monophasic, as well as charge-unbalanced and charge-balanced biphasic SCS waveforms.

View Article and Find Full Text PDF

Background: Radiofrequency (RF) ablation for denervation has been utilized for decades in chronic pain management. This relies on the proper targeting of the affected nerve which may be obtained by creating an ablation lesion with a shape and volume that optimizes targeting. Various systems designed to improve lesion size are available.

View Article and Find Full Text PDF

Background And Objectives: Spinal cord stimulation (SCS) has been shown to influence pain-related genes in the spinal cord directly under the stimulating electrodes. There is limited information regarding changes occurring at the dorsal root ganglion (DRG). This study evaluates gene expression in the DRG in response to SCS therapy.

View Article and Find Full Text PDF

Background And Objectives: Previously, we found that application of pulsed radiofrequency to a peripheral nerve injury induces changes in key genes regulating nociception concurrent with alleviation of paw sensitivity in an animal model. In the current study, we evaluated such genes after applying spinal cord stimulation (SCS) therapy.

Methods: Male Sprague-Dawley rats (n = 6 per group) were randomized into test and control groups.

View Article and Find Full Text PDF

Background: Few studies have evaluated single-gene changes modulated by spinal cord stimulation (SCS), providing a narrow understanding of molecular changes. Genomics allows for a robust analysis of holistic gene changes in response to stimulation.

Methods: Rats were randomized into six groups to determine the effect of continuous SCS in uninjured and spared-nerve injury (SNI) animals.

View Article and Find Full Text PDF

Objectives: Models that simulate clinical conditions are needed to gain an understanding of the mechanism involved during spinal cord stimulation (SCS) treatment of chronic neuropathic pain. An animal model has been developed for continuous SCS in which animals that have been injured to develop neuropathic pain behavior were allowed to carry on with regular daily activities while being stimulated for 72 hours.

Material And Methods: Sprague-Dawley rats were randomized into each of six different groups (N = 10-13).

View Article and Find Full Text PDF

Background And Objectives: Radiofrequency (RF) neuroablation is a common therapy for alleviating chronic pain. Larger lesion volumes lead to higher chance of ablating small sensory nerves; therefore, bipolar-RF and cooled-RF are improved alternatives to conventional monopolar-RF. This work provides an ex vivo comparison of bipolar-RF to cooled-RF lesioning in the presence of bone structure using some conventional temperature and time programs and in conjunction with injection of a variety of clinically used substances.

View Article and Find Full Text PDF