Publications by authors named "Courtney A Cruse"

Rationale: Although ubiquitous in explosives and ammunition, few trace methods for detection of heavy metal-containing primary explosives from forensic samples are currently in practice.

Methods: Extracts of cotton swabs or direct sampling of items were cleaned up using solid-phase extraction to remove heavy metal contaminants (i.e.

View Article and Find Full Text PDF

The nitro functional group (NO) features strongly in compounds such as explosives, pharmaceuticals, and fragrances. However, its gas phase absorbance characteristics in the vacuum UV region (120-200 nm) have not been systematically studied. Gas chromatography/vacuum UV spectroscopy (GC/VUV) was utilized to study the gas phase VUV spectra of various nitrated compounds (e.

View Article and Find Full Text PDF

Recent advances in benchtop vacuum ultraviolet (VUV) spectrometers have yielded effective universal detectors for gas chromatography (GC). The ability of these detectors to acquire absorbance spectra from 125 nm to 430 nm poses an alternative to the gold standard of mass spectrometry (MS) as a sensitive and selective GC detector. The applications of GC/VUV extend into many areas.

View Article and Find Full Text PDF

Gas chromatography/vacuum UV spectroscopy (GC/VUV) was utilized to study various explosives and pharmaceuticals in the nitrate ester and nitramine structural classes. In addition to generating specific VUV spectra for each compound, VUV was used to indicate the onset of thermal decomposition based upon the appearance of break-down products such as nitric oxide, carbon monoxide, formaldehyde, water, and molecular oxygen. The effect of temperature on decomposition could be fit to a logistical function where the fraction of intact compound remaining decreased as the transfer line/flow cell temperature was increased from 200 °C to 300 °C.

View Article and Find Full Text PDF

Analysis of nitrate ester explosives (e.g., nitroglycerine) using gas chromatography-vacuum ultraviolet spectroscopy (GC-VUV) results in their thermal decomposition into nitric oxide, water, carbon monoxide, oxygen, and formaldehyde.

View Article and Find Full Text PDF

Gas chromatography/mass spectrometry (GC/MS) is a "workhorse" instrument for chemical analysis, but it can be limited in its ability to differentiate structurally similar compounds. The coupling of GC to vacuum ultraviolet (VUV) spectroscopy is a recently developed technique with the potential for increased detection specificity. To date, GC/VUV has been demonstrated in the analysis of volatile organic compounds, petroleum products, aroma compounds, pharmaceuticals, illegal drugs, and lipids.

View Article and Find Full Text PDF