The fabrication of protected peptide-based hydrogels on electrode surfaces can be achieved by employing the electrochemical oxidation of hydroquinone to benzoquinone, liberating protons at the electrode-solution interface. The localised reduction in pH below the dipeptide gelator molecules p initiates the neutralisation, self-assembly and formation of self-supporting hydrogels exclusively at the electrode surface. Previous examples have been on a nanometre to millimetre scale, using deposition times ranging from seconds to minutes.
View Article and Find Full Text PDFIn living systems, self-assembly processes are driven by the consumption of chemical fuels. Synthetic adaptation of living systems can be achieved by coupling of competing pathways that drive the assembly and disassembly, respectively, under the influence of chemical fuels. Here, a pH-responsive transient gel system is created by simultaneous incorporation of two triggers, of which one is responsible for the initiation of the self-assembly by increasing the pH and the second trigger drives the disassembly by reducing the pH.
View Article and Find Full Text PDF