The increasing availability of ultrabright Light Sources is facilitating the study of smaller crystals at faster timescales but with an increased risk of severe X-ray damage, leading to developments in multi-crystal methods such as serial crystallography (SX). SX studies on crystals with small unit cells are challenging as very few reflections are recorded in a single data image, making it difficult to determine the orientation matrix for each crystal and thus preventing the combination of the data from all crystals for structure solution. We herein present a Small-Rotative Fixed-Target Serial Synchrotron Crystallography (SR-FT-SSX) methodology, in which rotation of the serial target through a small diffraction angle at each crystal delivers high-quality data, facilitating ab initio unit cell determination and atomic-scale structure solution.
View Article and Find Full Text PDFHeat loss across the beak is an important thermoregulatory mechanism among birds, particularly in large-beaked taxa such as toucans (Ramphastidae) and hornbills (Bucerotidae). The number of species investigated remains limited, as does our understanding of how the functional significance of this pathway varies with environmental variables such as humidity, with little previous research on species inhabiting humid environments. We used infrared thermography to test the hypothesis that large (600-1300 g) Afrotropical forest hornbills use their beaks and casques as thermal radiators.
View Article and Find Full Text PDFThe role of atmospheric humidity in the evolution of endotherms' thermoregulatory performance remains largely unexplored, despite the fact that elevated humidity is known to impede evaporative cooling capacity. Using a phylogenetically informed comparative framework, we tested the hypothesis that pronounced hyperthermia tolerance among birds occupying humid lowlands evolved to reduce the impact of humidity-impeded scope for evaporative heat dissipation by comparing heat tolerance limits (HTLs; maximum tolerable air temperature), maximum body temperatures (Tmax), and associated thermoregulatory variables in humid (19.2 g HO m) versus dry (1.
View Article and Find Full Text PDFThe switching behavior of the novel hybrid material (FA)Na[Fe(CN)(NO)].HO (1) in response to temperature (T), light irradiation and electric field (E) is studied using in situ X-ray diffraction (XRD). Crystals of 1 display piezoelectricity, pyroelectricity, second and third harmonic generation.
View Article and Find Full Text PDFDeveloping neural circuits are influenced by activity and are especially sensitive to changes in activity during critical periods (CPs) of development. Changes occurring during a CP often become 'locked in' so that they affect the mature network. Indeed, several neurodevelopmental disorders have been linked to excessive activity during such periods.
View Article and Find Full Text PDFWe present a charge density study of two linkage isomer photoswitches, [Pd(Budien)(NO)]BPh·THF (1) and [Ni(Etdien)(NO)] (2) using Hirshfeld Atom Refinement (HAR) methods implemented the NoSpherA2 interface in Olex2. HAR is used to explore the electron density distribution in the photoswitchable molecules of 1 and 2, to gain an in-depth understanding of key bonding features and their influence on the single-crystal-to-single-crystal reaction. HAR analysis is also combined with calculations to explore the non-covalent interactions that influence physical properties of the photoswitches, such as the stability of the excited state nitrito-(-ONO) isomer.
View Article and Find Full Text PDFDiscrete, extended gate pH-sensitive field-effect transistors (dEGFETs) fabricated on printed circuit boards (PCBs) are a low-cost, simple to manufacture analytical technology that can be applied to a wide range of applications. Electrodeposited iridium oxide (IrOx) films have emerged as promising pH-sensitive layers owing to their theoretically high pH sensitivity and facile deposition, but typically exhibit low pH sensitivity or lack reproducibility. Moreover, to date, a combined IrOx and dEGFET PCB system has not yet been realised.
View Article and Find Full Text PDFThe visualization of chemical processes that occur in the solid-state is key to the design of new functional materials. One of the challenges in these studies is to monitor the processes across a range of timescales in real-time. Here, we present a pump-multiprobe single-crystal X-ray diffraction (SCXRD) technique for studying photoexcited solid-state species with millisecond-to-minute lifetimes.
View Article and Find Full Text PDFCritical periods are phases of heightened plasticity that occur during the development of neural networks. Beginning with pioneering work of Hubel and Wiesel, which identified a critical period for the formation of ocular dominance in mammalian visual network connectivity, critical periods have been identified for many circuits, both sensory and motor, and across phyla, suggesting a universal phenomenon. However, a key unanswered question remains why these forms of plasticity are restricted to specific developmental periods rather than being continuously present.
View Article and Find Full Text PDFThe connectome project aims to map the synaptic connectivity of entire larval and adult fly neural networks, which is essential for understanding nervous system development and function. So far, the project has produced an impressive amount of electron microscopy data that has facilitated reconstructions of specific synapses, including many in the larval locomotor circuit. While this breakthrough represents a technical tour de force, the data remain underutilized, partly because of a lack of functional validation of reconstructions.
View Article and Find Full Text PDFObjectives: COVID-19-related restrictions for residential aged care (RAC) have been significant. However, the mental health impacts for residents already living with mental illness remain poorly understood. In this study, we examined change in mental health symptom burden for this group and potential associations with clinical and contextual factors.
View Article and Find Full Text PDFIt is difficult to answer important questions in neuroscience, such as: "how do neural circuits generate behaviour?," because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, .
View Article and Find Full Text PDFAnchoring a homogeneous catalyst onto a heterogeneous support facilitates separation of the product from the catalyst, and catalyst-substrate interactions can also modify reactivity. Herein we describe the synthesis of composite materials comprising carbon nitride (g-C N ) as the heterogeneous support and the well-established homogeneous catalyst moiety [Cp*IrCl] (where Cp*=η -C Me ), commonly used for catalytic hydrogenation. Coordination of [Cp*IrCl] to g-C N occurs directly at exposed edge sites with a κ N,N' binding motif, leading to a primary inner coordination sphere analogous to known homogeneous complexes of the general class [Cp*IrCl(NN-κ N,N')] (where N,N'=a bidentate nitrogen ligand).
View Article and Find Full Text PDFIR spectroscopy and model structural studies show binding of ReCl(CO)-fragments to carbon nitride (g-CN) occurs viaκ N,N' bidentate coordination.
View Article and Find Full Text PDFThe outer capsid spike protein VP4 of rotaviruses is a major determinant of infectivity and serotype specificity. Proteolytic cleavage of VP4 into 2 domains, VP8* and VP5*, enhances rotaviral infectivity. Interactions between the VP4 carbohydrate-binding domain (VP8*) and cell surface glycoconjugates facilitate initial virus-cell attachment and subsequent cell entry.
View Article and Find Full Text PDFDetection of viral infection by host cells leads to secretion of type I interferon, which induces antiviral gene expression. The class I major histocompatibility complex (MHCI) is required for viral antigen presentation and subsequent infected cell killing by cytotoxic T lymphocytes. STAT1 activation by interferon can induce NLRC5 expression, promoting MHCI expression.
View Article and Find Full Text PDFNature uses molybdenum-containing enzymes to catalyze oxygen atom transfer (OAT) from water to organic substrates. In these enzymes, the two electrons that are released during the reaction are rapidly removed, one at a time, by spatially separated electron transfer units. Inspired by this design, a Ru(II)-Mo(VI) dyad was synthesized and characterized, with the aim of accelerating the rate-determining step in the cis-dioxo molybdenum-catalyzed OAT cycle, the transfer of an oxo ligand to triphenyl phosphine, via a photo-oxidation process.
View Article and Find Full Text PDFRotavirus infection is associated with childhood progression to type 1 diabetes. Infection by monkey rotavirus RRV accelerates diabetes onset in non-obese diabetic (NOD) mice, which relates to regional lymph node infection and a T helper 1-specific immune response. When stimulated ex vivo with RRV, plasmacytoid dendritic cells (pDCs) from naïve NOD mice secrete type I interferon, which induces the activation of bystander lymphocytes, including islet-autoreactive T cells.
View Article and Find Full Text PDFSpecific roles have been ascribed to each of the 12 known rotavirus proteins apart from the non-structural protein 6 (NSP6). However, NSP6 may be present at sites of viral replication within the cytoplasm. Here we report that NSP6 from diverse species of rotavirus A localizes to mitochondria via conserved sequences in a predicted N-terminal a-helix.
View Article and Find Full Text PDFRotaviruses are major etiologic agents of severe gastroenteritis in human and animals, infecting the mature intestinal epithelium. Their attachment to host cell glycans is mediated through the virion spike protein. This is considered to be crucial for successful host cell invasion by rotaviruses.
View Article and Find Full Text PDFRotavirus-cell binding is the essential first step in rotavirus infection. This binding is a major determinant of rotavirus tropism, as host cell invasion is necessary to initiate infection. Initial rotavirus-cell interactions are mediated by carbohydrate-recognizing domain VP8* of the rotavirus capsid spike protein VP4.
View Article and Find Full Text PDFRotavirus infection is a major cause of life-threatening infantile gastroenteritis. The innate immune system provides an immediate mechanism of suppressing viral replication and is necessary for an effective adaptive immune response. Innate immunity involves host recognition of viral infection and establishment of a powerful antiviral state through the expression of pro-inflammatory cytokines such as type-1 interferon (IFN).
View Article and Find Full Text PDF