Publications by authors named "Costas Papadimitriou"

The present work offers a comprehensive overview of methods related to condition assessment of bridges through Structural Health Monitoring (SHM) procedures, with a particular interest on aspects of seismic assessment. Established techniques pertaining to different levels of the SHM hierarchy, reflecting increasing detail and complexity, are first outlined. A significant portion of this review work is then devoted to the overview of computational intelligence schemes across various aspects of bridge condition assessment, including sensor placement and health tracking.

View Article and Find Full Text PDF

A framework for optimal sensor placement (OSP) for virtual sensing using the modal expansion technique and taking into account uncertainties is presented based on information and utility theory. The framework is developed to handle virtual sensing under output-only vibration measurements. The OSP maximizes a utility function that quantifies the expected information gained from the data for reducing the uncertainty of quantities of interest (QoI) predicted at the virtual sensing locations.

View Article and Find Full Text PDF

Effective intervention strategies for epidemics rely on the identification of their origin and on the robustness of the predictions made by network disease models. We introduce a Bayesian uncertainty quantification framework to infer model parameters for a disease spreading on a network of communities from limited, noisy observations; the state-of-the-art computational framework compensates for the model complexity by exploiting massively parallel computing architectures. Using noisy, synthetic data, we show the potential of the approach to perform robust model fitting and additionally demonstrate that we can effectively identify the disease origin via Bayesian model selection.

View Article and Find Full Text PDF

The systematic identification of infected individuals is critical for the containment of the COVID-19 pandemic. Currently, the spread of the disease is mostly quantified by the reported numbers of infections, hospitalisations, recoveries and deaths; these quantities inform epidemiology models that provide forecasts for the spread of the epidemic and guide policy making. The veracity of these forecasts depends on the discrepancy between the numbers of reported, and unreported yet infectious, individuals.

View Article and Find Full Text PDF

The reproduction number is broadly considered as a key indicator for the spreading of the COVID-19 pandemic. Its estimated value is a measure of the necessity and, eventually, effectiveness of interventions imposed in various countries. Here we present an online tool for the data-driven inference and quantification of uncertainties for the reproduction number, as well as the time points of interventions for 51 European countries.

View Article and Find Full Text PDF

Mechanics-based dynamic models are commonly used in the design and performance assessment of structural systems, and their accuracy can be improved by integrating models with measured data. This paper provides an overview of hierarchical Bayesian model updating which has been recently developed for probabilistic integration of models with measured data, while accounting for different sources of uncertainties and modeling errors. The proposed hierarchical Bayesian framework allows one to explicitly account for pertinent sources of variability such as ambient temperatures and/or excitation amplitudes, as well as modeling errors, and therefore yields more realistic predictions.

View Article and Find Full Text PDF

Fish schooling implies an awareness of the swimmers for their companions. In flow mediated environments, in addition to visual cues, pressure and shear sensors on the fish body are critical for providing quantitative information that assists the quantification of proximity to other fish. Here we examine the distribution of sensors on the surface of an artificial swimmer so that it can optimally identify a leading group of swimmers.

View Article and Find Full Text PDF

Patient-specific modelling of haemodynamics in arterial networks has so far relied on parameter estimation for inexpensive or small-scale models. We describe here a Bayesian uncertainty quantification framework which makes two major advances: an efficient parallel implementation, allowing parameter estimation for more complex forward models, and a system for practical model selection, allowing evidence-based comparison between distinct physical models. We demonstrate the proposed methodology by generating simulated noisy flow velocity data from a branching arterial tree model in which a structural defect is introduced at an unknown location; our approach is shown to accurately locate the abnormality and estimate its physical properties even in the presence of significant observational and systemic error.

View Article and Find Full Text PDF

The Lennard-Jones (LJ) potential is a cornerstone of Molecular Dynamics (MD) simulations and among the most widely used computational kernels in science. The LJ potential models atomistic attraction and repulsion with century old prescribed parameters (q = 6, p = 12, respectively), originally related by a factor of two for simplicity of calculations. We propose the inference of the repulsion exponent through Hierarchical Bayesian uncertainty quantification We use experimental data of the radial distribution function and dimer interaction energies from quantum mechanics simulations.

View Article and Find Full Text PDF

We propose a hierarchical Bayesian framework to systematically integrate heterogeneous data for the calibration of force fields in Molecular Dynamics (MD) simulations. Our approach enables the fusion of diverse experimental data sets of the physico-chemical properties of a system at different thermodynamic conditions. We demonstrate the value of this framework for the robust calibration of MD force-fields for water using experimental data of its diffusivity, radial distribution function, and density.

View Article and Find Full Text PDF

For over five decades, molecular dynamics (MD) simulations have helped to elucidate critical mechanisms in a broad range of physiological systems and technological innovations. MD simulations are synergetic with experiments, relying on measurements to calibrate their parameters and probing "what if scenarios" for systems that are difficult to investigate experimentally. However, in certain systems, such as nanofluidics, the results of experiments and MD simulations differ by several orders of magnitude.

View Article and Find Full Text PDF

We present a Bayesian probabilistic framework for quantifying and propagating the uncertainties in the parameters of force fields employed in molecular dynamics (MD) simulations. We propose a highly parallel implementation of the transitional Markov chain Monte Carlo for populating the posterior probability distribution of the MD force-field parameters. Efficient scheduling algorithms are proposed to handle the MD model runs and to distribute the computations in clusters with heterogeneous architectures.

View Article and Find Full Text PDF