Publications by authors named "Costas Gogos"

Objective: The objective of this study was to develop a method that enabled granulation in a counter-rotating batch mixer to emulate large scale dry twin screw granulation trials.

Methods: Four granulations were prepared using counter rotating batch mixing for formulations containing a mixture of different particle sizes of the API (70% w/w) and polymer (30% w/w). Milled theophylline (MTHF; fine API) was blended with coarse hydroxypropyl cellulose (HPC MF; coarse polymer), theophylline (THF; coarse API) with fine hydroxypropyl cellulose (HPC EXF, fine polymer), and the other two formulations consisted of both components in the blend being fine or coarse.

View Article and Find Full Text PDF

Nanoextrusion was used to produce extrudates of griseofulvin, a poorly water-soluble drug, with the objective of examining the impact of drug particle size and polymeric matrix type-size of the extrudates on drug dissolution enhancement. Hydroxypropyl cellulose (HPC) and Soluplus® were used to stabilize wet-milled drug suspensions and form matrices of the extrudates. The wet-milled suspensions along with additional polymer (HPC/Soluplus®) were fed to a co-rotating twin-screw extruder, which dried the suspensions and formed various extrudates.

View Article and Find Full Text PDF

The dissolution rate of the active pharmaceutical ingredients in pharmaceutical hot-melt extrusion is the most critical elementary step during the extrusion of amorphous solid solutions - total dissolution has to be achieved within the short residence time in the extruder. Dissolution and dissolution rates are affected by process, material and equipment variables. In this work, we examine the effect of one of the material variables and one of the equipment variables, namely, the API particle size and extruder screw configuration on the API dissolution rate, in a co-rotating, twin-screw extruder.

View Article and Find Full Text PDF

A simple, sensitive, efficient, and novel method analyzing the number of spherulitic nuclei was proposed to estimate the solubility of a model drug acetaminophen (APAP) in poly(ethylene oxide) (PEO). At high crystallization temperature (323 K), 10% APAP-PEO had the same low number of spherulitic nuclei as pure PEO, indicating that APAP and PEO were fully miscible. At low crystallization temperature (303 K), the number of nuclei for 10% APAP-PEO was significantly higher, suggesting that APAP was oversaturated and therefore recrystallized and acted as a nucleating agent.

View Article and Find Full Text PDF

The objective of this study is to understand the underlying mechanisms responsible for the superior stability of indomethacin (INM)-Eudragit® E PO (E PO) system by exploring the miscibility and intermolecular interactions through the combination of thermal, rheological, and spectroscopic analysis. The zero shear-rate viscosity drops monotonically with the increase of INM concentration at 145 °C, suggesting that E PO and INM form a solution and the small molecular drug acts as a plasticizer. Flow activation energy was calculated from the viscosity data at different temperature.

View Article and Find Full Text PDF

Solid dispersion technologies such as hot-melt extrusion and spray drying are often used to enhance the solubility of poorly soluble drugs. The biggest challenge associated with solid dispersion systems is that amorphous drugs may phase-separate from the polymeric matrix and recrystallize during storage. A more fundamental understanding of drug-polymer mixtures is needed for the industry to embrace the solid dispersion technologies.

View Article and Find Full Text PDF

There is a growing interest of extrusion drug and polymer together to manufacture various solid dosages. In those cases, the drug's release profiles are greatly affected by the miscibility of two materials. The goal of this study is to test the drug's solubility in molten polymer and obtain the mixture's rheological properties for the purpose of optimizing the extrusion process.

View Article and Find Full Text PDF

A drug's solubility in a polymeric excipient is an important parameter that dictates the process window of hot-melt extrusion (HME) and product stability during storage. However, it is rather challenging to experimentally determine the solubility and there is very few published work in this field. In this study, the solubility of a model drug acetaminophen (APAP) in a pharmaceutical grade polymer poly(ethylene oxide) (PEO) at HME processing temperature was measured utilizing rheological analysis, hot-stage microscopy and differential scanning calorimetry (DSC).

View Article and Find Full Text PDF

In this study, a model drug, acetaminophen (APAP), was melt mixed with poly(ethylene oxide) (PEO) using a Brabender mixer. APAP was found to recrystallize upon cooling to room temperature for all the drug loadings investigated. Higher drug loading leads to faster recrystallization rate.

View Article and Find Full Text PDF

This work studied the dissolution of indomethacin (INM) into polymer excipient Eudragit E PO (E PO) melt at temperatures lower than the melting point of INM using a laboratory-size, twin-screw counter-rotating batch internal mixer. The effects of three process parameters--set mixer temperature, screw rotating speed and residence time--were systematically studied. Scanning electron microscopy (SEM), optical microscopy (OM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were employed to investigate the evolution of INM's dissolution into the molten excipient.

View Article and Find Full Text PDF