We present an extension of our Molecular Transformer model combined with a hyper-graph exploration strategy for automatic retrosynthesis route planning without human intervention. The single-step retrosynthetic model sets a new state of the art for predicting reactants as well as reagents, solvents and catalysts for each retrosynthetic step. We introduce four metrics (coverage, class diversity, round-trip accuracy and Jensen-Shannon divergence) to evaluate the single-step retrosynthetic models, using the forward prediction and a reaction classification model always based on the transformer architecture.
View Article and Find Full Text PDFOrganic synthesis is one of the key stumbling blocks in medicinal chemistry. A necessary yet unsolved step in planning synthesis is solving the forward problem: Given reactants and reagents, predict the products. Similar to other work, we treat reaction prediction as a machine translation problem between simplified molecular-input line-entry system (SMILES) strings (a text-based representation) of reactants, reagents, and the products.
View Article and Find Full Text PDFThere is an intuitive analogy of an organic chemist's understanding of a compound and a language speaker's understanding of a word. Based on this analogy, it is possible to introduce the basic concepts and analyze potential impacts of linguistic analysis to the world of organic chemistry. In this work, we cast the reaction prediction task as a translation problem by introducing a template-free sequence-to-sequence model, trained end-to-end and fully data-driven.
View Article and Find Full Text PDFPower awareness is fast becoming immensely important in computing, ranging from the traditional high-performance computing applications to the new generation of data centric workloads. In this work, we describe our efforts towards a power-efficient computing paradigm that combines low- and high-precision arithmetic. We showcase our ideas for the widely used kernel of solving systems of linear equations that finds numerous applications in scientific and engineering disciplines as well as in large-scale data analytics, statistics and machine learning.
View Article and Find Full Text PDF