Histone deacetylase (HDAC) inhibitors have garnered considerable interest for the treatment of adult and pediatric malignant brain tumors. However, owing to their broad-spectrum nature and inability to effectively penetrate the blood-brain barrier, HDAC inhibitors have failed to provide substantial clinical benefit to patients with glioblastoma (GBM) to date. Moreover, global inhibition of HDACs results in widespread toxicity, highlighting the need for selective isoform targeting.
View Article and Find Full Text PDFGlioblastoma (GBM) is characterized by an aberrant yet druggable epigenetic landscape. One major family of epigenetic regulators, the histone deacetylases (HDACs), are considered promising therapeutic targets for GBM due to their repressive influences on transcription. Although HDACs share redundant functions and common substrates, the unique isoform-specific roles of different HDACs in GBM remain unclear.
View Article and Find Full Text PDFMalignant gliomas are the most common, infiltrative, and lethal primary brain tumors affecting the adult population. The grim prognosis for this disease is due to a combination of the presence of highly invasive tumor cells that escape surgical resection and the presence of a population of therapy-resistant cancer stem cells found within these tumors. Several studies suggest that glioma cells have cleverly hijacked the normal developmental program of neural progenitor cells, including their transcriptional programs, to enhance gliomagenesis.
View Article and Find Full Text PDF