Publications by authors named "Costanza Bonadonna"

A detailed study of past eruptive activity is crucial to understanding volcanic systems and associated hazards. We present a meticulous stratigraphic analysis, a comprehensive chronological reconstruction, thorough tephra mapping, and a detailed analysis of the interplay between primary and secondary volcanic processes of the post-900 AD activity of La Fossa caldera, including the two main systems of La Fossa volcano and Vulcanello cones (Vulcano Island, Italy). Our analyses demonstrate how the recent volcanic activity of La Fossa caldera is primarily characterized by effusive and Strombolian activity and Vulcanian eruptions, combined with sporadic sub-Plinian events and both impulsive and long-lasting phreatic explosions, all of which have the capacity to severely impact the entire northern sector of Vulcano island.

View Article and Find Full Text PDF

Unlabelled: The simultaneous or sequential occurrence of several hazards-be they of natural or anthropogenic sources-can interact to produce unexpected hazards and impacts. Since success in responding to volcanic crises is often conditional on accurate identification of spatiotemporal patterns of hazard prior to an eruption, ignoring these interactions can lead to a misrepresentation or misinterpretation of the risk and, during emergencies, ineffective management priorities. The 2021 eruption of Tajogaite volcano on the island of La Palma, Canary Islands (Spain), was an 86 day-long hybrid explosive-effusive eruption that demonstrated the challenges of managing volcanic crises associated with the simultaneous emission of lava, tephra and volcanic gases.

View Article and Find Full Text PDF

Although the characterization of the sticking and aggregation probability is essential to the description of volcanic ash dispersal and sedimentation, there is still no general model describing the sticking probability of volcanic ash. Experiments of dry particle-plate collisions in an enclosed box were carried out to characterize quantitatively the sticking efficiency of volcanic particles and silica beads in a limit case scenario where the mass of one of the particles is much greater than the others. Silica beads and volcanic particles from a Sakurajima Vulcanian eruption were filmed impacting a glass plate with a High-Speed Camera.

View Article and Find Full Text PDF

The most frequent volcanic eruptions are of low-intensity and small magnitude. They produce abundant ash-sized (< 2 mm) clasts, which are too small to establish quantitative links between magmatic processes and eruptive dynamics using classic approaches. This inhibits our ability to study the past behaviour of frequently erupting volcanoes, essential to predict their future activity and mitigate their impact.

View Article and Find Full Text PDF

The description of the formation of ash aggregates is crucial to our understanding of tephra dispersal and, therefore, to the forecasting of volcanic ash concentration in the atmosphere. Regardless of the importance of electrostatic processes, particle and aggregate charge is of complex determination both in the field and in the laboratory. We have measured the bulk charge carried by single aggregates at Sakurajima volcano (Japan) by inverting the sedimentation trajectory across two high-voltage copper plates filmed using a high-speed camera.

View Article and Find Full Text PDF

Tephra is a unique volcanic product with an unparalleled role in understanding past eruptions, long-term behavior of volcanoes, and the effects of volcanism on climate and the environment. Tephra deposits also provide spatially widespread, high-resolution time-stratigraphic markers across a range of sedimentary settings and thus are used in numerous disciplines (e.g.

View Article and Find Full Text PDF

Unlabelled: Risk assessments in volcanic contexts are complicated by the multi-hazard nature of both unrest and eruption phases, which frequently occur over a wide range of spatial and temporal scales. As an attempt to capture the multi-dimensional and dynamic nature of volcanic risk, we developed an (ADVISE) model that focuses on two temporal dimensions that authorities have to address in a volcanic context: short-term emergency management and long-term risk management. The output of risk assessment in the ADVISE model is expressed in terms of potential physical, functional, and systemic damage, determined by combining the available information on hazard, exposed systems and vulnerability.

View Article and Find Full Text PDF

A large amount of volcanic ash produced during explosive volcanic eruptions has been found to sediment as aggregates of various types that typically reduce the associated residence time in the atmosphere (i.e., premature sedimentation).

View Article and Find Full Text PDF

We investigate the timescales of the horizontal mass flux decay of wind remobilised volcanic particles in Argentina, associated with the tephra-fallout deposit produced by the 2011-2012 Cordón Caulle (Chile) eruption. Particle removal processes are controlled by complex interactions of meteorological conditions, surface properties and particle depletion with time. We find that ash remobilisation follows a two-phase exponential decay with specific timescales for the initial input of fresh ash (1-74 days) and the following soil stabilisation processes (3-52 months).

View Article and Find Full Text PDF

Acoustic pressure is largely used to monitor explosive activity at volcanoes and has become one of the most promising technique to monitor volcanoes also at large scale. However, no clear relation between the fluid dynamics of explosive eruptions and the associated acoustic signals has yet been defined. Linear acoustic has been applied to derive source parameters in the case of strong explosive eruptions which are well-known to be driven by large overpressure of the magmatic fluids.

View Article and Find Full Text PDF