Publications by authors named "Costantino Menna"

Mechanical forces, acting on eukaryotic cells, are responsible for cell shape, cell proliferation, cell polarity, and cell differentiation thanks to two cells abilities known as mechanosensing and mechanotransduction. Mechanosensing consists of the ability of a cell to sense mechanical cues, while mechanotransduction is the capacity of a cell to respond to these signals by translating mechanical stimuli into biochemical ones. These signals propagate from the extracellular matrix to the nucleus with different well known physical connections, but how the mechanical signals are transduced into biochemical ones remains an open challenge.

View Article and Find Full Text PDF

This study aims to provide a mitigation strategy for reducing the economic and environmental impacts of carbon fiber wastes deriving from automotive industry. Recycling and reuse in the construction industry is proposed, according to an industrial symbiosis within a circular economy perspective. Specifically, the process consists of repurposing carbon fiber reinforced polymer (CFRP) scraps/waste into new cement-matrix composites, for which the resulting benefits, in terms of mechanical and environmental performance, are herein described.

View Article and Find Full Text PDF

This research investigates the preparation and characterization of new organic-inorganic geopolymeric foams obtained by simultaneously reacting coal fly ash and an alkali silicate solution with polysiloxane oligomers. Foaming was realized in situ using Si as a blowing agent. Samples with density ranging from 0.

View Article and Find Full Text PDF

The preparation and characterization of innovative organic-inorganic hybrid geopolymers, obtained by valorizing coal fly ash generated from thermoelectric power plants, is reported for the first time. These hybrid materials are prepared by simultaneously reacting fly ash and dimethylsiloxane oligomers at 25 °C in a strongly alkaline environment. Despite their lower density, the obtained materials are characterized by highly improved mechanical properties when compared to the unmodified geopolymer obtained without the use of polysiloxanes, hence confirming the effectiveness of the applied synthetic strategy which specifically aims at obtaining hybrid materials with better mechanical properties in respect to conventional ones.

View Article and Find Full Text PDF

Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively.

View Article and Find Full Text PDF

In this study the development of a metakaolin based geopolymeric mortar to be used as bonding matrix for external strengthening of reinforced concrete beams is reported. Four geopolymer formulations have been obtained by varying the composition of the activating solution in terms of SiO₂/Na₂O ratio. The obtained samples have been characterized from a structural, microstructural and mechanical point of view.

View Article and Find Full Text PDF