Publications by authors named "Cosmin Ancuti"

Low-light image enhancement (LLIE) techniques improve the performance of image sensors by enhancing visibility and details in poorly lit environments and have significantly benefited from recent research into Transformer models. This work presents a novel Transformer attention mechanism inspired by the Kolmogorov-Arnold representation theorem, incorporating learnable non-linearity and multivariate function decomposition. This innovative mechanism is the foundation of KAN-T, our proposed Transformer network.

View Article and Find Full Text PDF

We introduce an effective fusion-based technique to enhance both day-time and night-time hazy scenes. When inverting the Koschmieder light transmission model, and by contrast with the common implementation of the popular dark-channel DehazeHeCVPR2009, we estimate the airlight on image patches and not on the entire image. Local airlight estimation is adopted because, under night-time conditions, the lighting generally arises from multiple localized artificial sources, and is thus intrinsically non-uniform.

View Article and Find Full Text PDF

This article introduces a novel solution to improve image enhancement in terms of color appearance. Our approach, called Color Channel Compensation (3C), overcomes artifacts resulting from the severely non-uniform color spectrum distribution encountered in images captured under hazy night-time conditions, underwater, or under non-uniform artificial illumination. Our solution is founded on the observation that, under such adverse conditions, the information contained in at least one color channel is close to completely lost, making the traditional enhancing techniques subject to noise and color shifting.

View Article and Find Full Text PDF

We introduce an effective technique to enhance the images captured underwater and degraded due to the medium scattering and absorption. Our method is a single image approach that does not require specialized hardware or knowledge about the underwater conditions or scene structure. It builds on the blending of two images that are directly derived from a color-compensated and white-balanced version of the original degraded image.

View Article and Find Full Text PDF

Due to its robustness and effectiveness, multi-scale fusion (MSF) based on the Laplacian pyramid decomposition has emerged as a popular technique that has shown utility in many applications. Guided by several intuitive measures (weight maps) the MSF process is versatile and straightforward to be implemented. However, the number of pyramid levels increases with the image size, which implies sophisticated data management and memory accesses, as well as additional computations.

View Article and Find Full Text PDF

Haze is an atmospheric phenomenon that significantly degrades the visibility of outdoor scenes. This is mainly due to the atmosphere particles that absorb and scatter the light. This paper introduces a novel single image approach that enhances the visibility of such degraded images.

View Article and Find Full Text PDF