Publications by authors named "Cosme G Ayani"

The prominent role of electron-electron interactions in two-dimensional (2D) materials is at the origin of a great variety of fermionic correlated states reported in the literature. Artificial van der Waals heterostructures comprising single layers of highly correlated insulators allow one to explore the effect of the subtle interlayer interaction in the way electrons interact. We study the temperature dependence of the electronic properties of a van der Waals heterostructure composed of a single-layer Mott insulator lying on a metallic substrate by performing quasi-particle interference (QPI) maps.

View Article and Find Full Text PDF

This study delves into the intriguing properties of the 1H/1T-TaS van der Waals heterostructure, focusing on the transparency of the 1H layer to the charge density wave of the underlying 1T layer. Despite the sizable interlayer separation and metallic nature of the 1H layer, positive bias voltages result in a pronounced superposition of the 1T charge density wave structure on the 1H layer. The conventional explanation relying on tunneling effects proves insufficient.

View Article and Find Full Text PDF

Molecular functionalization of MoS has attracted a lot of attention due to its potential to afford fine-tuned hybrid materials that benefit from the power of synthetic chemistry and molecular design. Here, we report on the on-surface reaction of maleimides on bulk and molecular beam epitaxy grown single-layer MoS, both in ambient conditions as well as ultrahigh vacuum using scanning probe microscopy.

View Article and Find Full Text PDF

Kondo lattices are systems with unusual electronic properties that stem from strong electron correlation, typically studied in intermetallic 3D compounds containing lanthanides or actinides. Lowering the dimensionality of the system enhances the role of electron correlations providing a new tuning knob for the search of novel properties in strongly correlated quantum matter. The realization of a 2D Kondo lattice by stacking a single-layer Mott insulator on a metallic surface is reported.

View Article and Find Full Text PDF

Polymorphic phases and collective phenomena-such as charge density waves (CDWs)-in transition metal dichalcogenides (TMDs) dictate the physical and electronic properties of the material. Most TMDs naturally occur in a single given phase, but the fine-tuning of growth conditions via methods such as molecular beam epitaxy (MBE) allows to unlock otherwise inaccessible polymorphic structures. Exploring and understanding the morphological and electronic properties of new phases of TMDs is an essential step to enable their exploitation in technological applications.

View Article and Find Full Text PDF

In this work we fabricate and characterize a functionalized superconducting (SC) Nb tip of a scanning tunnelling microscope (STM). The tip is functionalized with a Tetracyanoquinodimethane molecule (TCNQ) that accepts charge from the tip and develops a magnetic moment. As a consequence, in scanning tunnelling spectroscopy (STS), sharp, bias symmetric sub-gap states identified as Yu-Shiba-Rusinov (YSR) bound states appear against the featureless density of states of a metallic graphene on Ir(111) sample.

View Article and Find Full Text PDF

The on-surface photogeneration of nonacene from α-bisdiketone precursors deposited on nanostructured epitaxial graphene grown on Ru(0001) has been studied by means of low temperature scanning tunneling microscopy and spectroscopy. The presence of an unoccupied surface state, spatially localized in the regions where the precursors are adsorbed, and energetically accessible in the region of the electromagnetic spectrum where n-π* transitions take place, allows for a 100% conversion of the precursors into nonacenes. With the help of state-of-the-art theoretical calculations, we show that such a high yield is due to the effective population of the surface state by the incoming light and the ensuing electron transfer to the unoccupied states of the precursors through an inelastic scattering mechanism.

View Article and Find Full Text PDF

The development of graphene (Gr) spintronics requires the ability to engineer epitaxial Gr heterostructures with interfaces of high quality, in which the intrinsic properties of Gr are modified through proximity with a ferromagnet to allow for efficient room temperature spin manipulation or the stabilization of new magnetic textures. These heterostructures can be prepared in a controlled way by intercalation through graphene of different metals. Using photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM), we achieve a nanoscale control of thermally activated intercalation of a homogeneous ferromagnetic (FM) layer underneath epitaxial Gr grown onto (111)-oriented heavy metal (HM) buffers deposited, in turn, onto insulating oxide surfaces.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7tg3uqpvr1lf3chlqavfck0mcg0vnlef): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once