Impervious surfaces are a significant issue of both urbanization and environmental assessment. However, it is a problem to classify impervious surface (IS) and soil areas as separate classes in land cover classification. The objectives of this study are to obtain impervious surface, vegetation, and soil areas clearly of an urban complex with a semi-arid climate and to better determine the relationships of IS, vegetation, and soil areas with land surface temperatures (LSTs).
View Article and Find Full Text PDFPublic and private companies make significant water infrastructure investments to meet increasing water demand. In this context, investments in wastewater treatment plants (WWTPs), which play an important role in recycling of used water, are also increasing. This study investigates determination of the efficiency scores of WWTPs considering each metropolitan municipality as a decision-making unit (DMU).
View Article and Find Full Text PDFWater treatment plants play a major role in the cycle of water recovery and reuse. Besides the benefits of water treatment plants, they have a great impact on the environment, social life, economy, and natural habitats. In this sense, decision-makers should effectively plan the construction and operational activities of plants, taking into account the expectations of users.
View Article and Find Full Text PDFWetlands are among the most productive ecosystems that provide services ranging from flood control to climate change mitigation. Wetlands are also critical habitats for the survival of numerous plant and animal species. In this study, we used satellite remote sensing techniques for classification and change detection at an internationally important wetland (Ramsar Site) in Turkey.
View Article and Find Full Text PDFThe aim of this study was to derive land cover products with a 300-m pixelresolution of Envisat MERIS (Medium Resolution Imaging Spectrometer) to quantify netprimary productivity (NPP) of conifer forests of Taurus Mountain range along the EasternMediterranean coast of Turkey. The Carnegie-Ames-Stanford approach (CASA) was usedto predict annual and monthly regional NPP as modified by temperature, precipitation,solar radiation, soil texture, fractional tree cover, land cover type, and normalizeddifference vegetation index (NDVI). Fractional tree cover was estimated using continuoustraining data and multi-temporal metrics of 47 Envisat MERIS images of March 2003 toSeptember 2005 and was derived by aggregating tree cover estimates made from high-resolution IKONOS imagery to coarser Landsat ETM imagery.
View Article and Find Full Text PDF